Dendritic backpropagation and synaptic plasticity in the mormyrid electrosensory lobe

Engelmann J, van de Burg E, Bacelo J, de Ruijters M, Kuwana S, Sugawara Y, Grant K (2008)
J Physiol Paris 102(4-6): 233-245.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Engelmann, JacobUniBi ; van de Burg, E.; Bacelo, J.; de Ruijters, M.; Kuwana, S.; Sugawara, Y.; Grant, K.
Abstract / Bemerkung
This study is concerned with the origin of backpropagating action potentials in GABAergic, medium ganglionic layer neurones (MG-cells) of the mormyrid electrosensory lobe (ELL). The characteristically broad action potentials of these neurones are required for the expression of spike timing dependent plasticity (STDP) at afferent parallel fibre synapses. It has been suggested that this involves active conductances in MG-cell apical dendrites, which constitute a major component of the ELL molecular layer. Immunohistochemistry showed dense labelling of voltage gated sodium channels (VGSC) throughout the molecular layer, as well as in the ganglionic layer containing MG somata, and in the plexiform and upper granule cell layers of ELL. Potassium channel labelling was sparse, being most abundant in the deep fibre layer and the nucleus of the electrosensory lobe. Intracellular recordings from MG-cells in vitro, made in conjunction with voltage sensitive dye measurements, confirmed that dendritic backpropagation is active over at least the inner half of the molecular layer. Focal TTX applications demonstrated that in most case the origin of the backpropagating action potentials is in the proximal dendrites, whereas the small narrow spikes also seen in these neurones most likely originate in the axon. It had been speculated that the slow time course of membrane repolarisation following the broad action potentials was due to a poor expression of potassium channels in the dendritic compartments, or to their voltage- or calcium-sensitive inactivation. However application of TEA and 4AP confirmed that both A-type and delayed rectifying potassium channels normally contribute to membrane repolarisation following dendritic and axonal spikes. An alternative explanation for the shape of MG action potentials is that they represent the summation of active events occurring more or less synchronously in distal dendrites. Coincidence of backpropagating action potentials with parallel fibre input produces a strong local depolarisation that could be sufficient to cause local secretion of GABA, which might then cause plastic change through an action on presynaptic GABA(B) receptors. However, STP depression remained robust in the presence of GABAB receptor antagonists.
Stichworte
4-Aminopyridine/pharmacology Action Potentials/drug effects/physiology Animals Dendrites/drug effects/*physiology Dose-Response Relationship; Biochemical/*physiology Microtubule-Associated Proteins/metabolism Neuronal Plasticity/*physiology Neurons/cytology/physiology Potassium Channel Blockers/pharmacology Potassium Channels/classification/metabolism Rhombencephalon/*cytology Sodium Channel Blockers/pharmacology Sodium Channels/classification/metabolism Synapses/*physiology Tetraethylammonium/pharmacology Tetrodotoxin/pharmacology; Drug Electric Fish/*physiology Electric Stimulation/methods Feedback
Erscheinungsjahr
2008
Zeitschriftentitel
J Physiol Paris
Band
102
Ausgabe
4-6
Seite(n)
233-245
ISSN
0928-4257
Page URI
https://pub.uni-bielefeld.de/record/1998930

Zitieren

Engelmann J, van de Burg E, Bacelo J, et al. Dendritic backpropagation and synaptic plasticity in the mormyrid electrosensory lobe. J Physiol Paris. 2008;102(4-6):233-245.
Engelmann, J., van de Burg, E., Bacelo, J., de Ruijters, M., Kuwana, S., Sugawara, Y., & Grant, K. (2008). Dendritic backpropagation and synaptic plasticity in the mormyrid electrosensory lobe. J Physiol Paris, 102(4-6), 233-245. https://doi.org/10.1016/j.jphysparis.2008.10.004
Engelmann, Jacob, van de Burg, E., Bacelo, J., de Ruijters, M., Kuwana, S., Sugawara, Y., and Grant, K. 2008. “Dendritic backpropagation and synaptic plasticity in the mormyrid electrosensory lobe”. J Physiol Paris 102 (4-6): 233-245.
Engelmann, J., van de Burg, E., Bacelo, J., de Ruijters, M., Kuwana, S., Sugawara, Y., and Grant, K. (2008). Dendritic backpropagation and synaptic plasticity in the mormyrid electrosensory lobe. J Physiol Paris 102, 233-245.
Engelmann, J., et al., 2008. Dendritic backpropagation and synaptic plasticity in the mormyrid electrosensory lobe. J Physiol Paris, 102(4-6), p 233-245.
J. Engelmann, et al., “Dendritic backpropagation and synaptic plasticity in the mormyrid electrosensory lobe”, J Physiol Paris, vol. 102, 2008, pp. 233-245.
Engelmann, J., van de Burg, E., Bacelo, J., de Ruijters, M., Kuwana, S., Sugawara, Y., Grant, K.: Dendritic backpropagation and synaptic plasticity in the mormyrid electrosensory lobe. J Physiol Paris. 102, 233-245 (2008).
Engelmann, Jacob, van de Burg, E., Bacelo, J., de Ruijters, M., Kuwana, S., Sugawara, Y., and Grant, K. “Dendritic backpropagation and synaptic plasticity in the mormyrid electrosensory lobe”. J Physiol Paris 102.4-6 (2008): 233-245.

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Electric fish genomics: Progress, prospects, and new tools for neuroethology.
Pitchers WR, Constantinou SJ, Losilla M, Gallant JR., J Physiol Paris 110(3 pt b), 2016
PMID: 27769923
A temporal basis for predicting the sensory consequences of motor commands in an electric fish.
Kennedy A, Wayne G, Kaifosh P, Alviña K, Abbott LF, Sawtell NB., Nat Neurosci 17(3), 2014
PMID: 24531306
Non-Hebbian spike-timing-dependent plasticity in cerebellar circuits.
Piochon C, Kruskal P, Maclean J, Hansel C., Front Neural Circuits 6(), 2012
PMID: 23335888
A Re-Examination of Hebbian-Covariance Rules and Spike Timing-Dependent Plasticity in Cat Visual Cortex in vivo.
Frégnac Y, Pananceau M, René A, Huguet N, Marre O, Levy M, Shulz DE., Front Synaptic Neurosci 2(), 2010
PMID: 21423533
Anti-hebbian spike-timing-dependent plasticity and adaptive sensory processing.
Roberts PD, Leen TK., Front Comput Neurosci 4(), 2010
PMID: 21228915

49 References

Daten bereitgestellt von Europe PubMed Central.

Active dendritic conductances dynamically regulate GABA release from thalamic interneurons.
Acuna-Goycolea C, Brenowitz SD, Regehr WG., Neuron 57(3), 2008
PMID: 18255034
Synaptic plasticity in a cerebellum-like structure depends on temporal order.
Bell CC, Han VZ, Sugawara Y, Grant K., Nature 387(6630), 1997
PMID: 9153391
Synaptic plasticity in the mormyrid electrosensory lobe.
Bell CC, Han VZ, Sugawara Y, Grant K., J. Exp. Biol. 202(Pt 10), 1999
PMID: 10210674
Presynaptic modulation of the retinogeniculate synapse.
Chen C, Regehr WG., J. Neurosci. 23(8), 2003
PMID: 12716920
Molecular diversity of K+ channels.
Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, Moreno H, Nadal MS, Ozaita A, Pountney D, Saganich M, Vega-Saenz de Miera E, Rudy B., Ann. N. Y. Acad. Sci. 868(), 1999
PMID: 10414301
Sodium channels in cerebellar purkinje cells of mormyrid fish
de, 2003
Voltage-gated sodium channels in cerebellar Purkinje cells of mormyrid fish.
de Ruiter MM, De Zeeuw CI, Hansel C., J. Neurophysiol. 96(1), 2006
PMID: 16598064
Persistent Na+ current modifies burst discharge by regulating conditional backpropagation of dendritic spikes.
Doiron B, Noonan L, Lemon N, Turner RW., J. Neurophysiol. 89(1), 2003
PMID: 12522183
Dendritic spike back propagation in the electrosensory lobe of Gnathonemus petersii.
Gomez L, Kanneworff M, Budelli R, Grant K., J. Exp. Biol. 208(Pt 1), 2005
PMID: 15601885
Sensory expectations and anti-Hebbian synaptic plasticity in cerebellum-like structures.
Grant K, Bell C, Han V., J. Physiol. Paris 90(3-4), 1996
PMID: 9116674
Physiology of cells in the central lobes of the mormyrid cerebellum.
Han VZ, Bell CC., J. Neurosci. 23(35), 2003
PMID: 14657174
Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons.
Helmchen F, Imoto K, Sakmann B., Biophys. J. 70(2), 1996
PMID: 8789126
In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons.
Helmchen F, Svoboda K, Denk W, Tank DW., Nat. Neurosci. 2(11), 1999
PMID: 10526338
Funding for malaria genome sequencing.
Hoffman SL, Bancroft WH, Gottlieb M, James SL, Burroughs EC, Stephenson JR, Morgan MJ., Nature 387(6634), 1997
PMID: 9192878
Conditional spike backpropagation generates burst discharge in a sensory neuron.
Lemon N, Turner RW., J. Neurophysiol. 84(3), 2000
PMID: 10980024
Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons.
Magee J, Hoffman D, Colbert C, Johnston D., Annu. Rev. Physiol. 60(), 1998
PMID: 9558467
Interneurons of the ganglionic layer in the mormyrid electrosensory lateral line lobe: morphology, immunohistochemistry, and synaptology.
Meek J, Grant K, Sugawara Y, Hafmans TG, Veron M, Denizot JP., J. Comp. Neurol. 375(1), 1996
PMID: 8913892

AUTHOR UNKNOWN, 0
Existence of distinct sodium channel messenger RNAs in rat brain.
Noda M, Ikeda T, Kayano T, Suzuki H, Takeshima H, Kurasaki M, Takahashi H, Numa S., Nature 320(6058), 1986
PMID: 3754035
The contribution of dendritic Kv3 K+ channels to burst threshold in a sensory neuron.
Rashid AJ, Morales E, Turner RW, Dunn RJ., J. Neurosci. 21(1), 2001
PMID: 11150328

AUTHOR UNKNOWN, 0
Expression and distribution of voltage-gated sodium channels in the cerebellum.
Schaller KL, Caldwell JH., Cerebellum 2(1), 2003
PMID: 12882229
The making of a complex spike: ionic composition and plasticity.
Schmolesky MT, Weber JT, De Zeeuw CI, Hansel C., Ann. N. Y. Acad. Sci. 978(), 2002
PMID: 12582067
The role of BK-type Ca2+-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells.
Shao LR, Halvorsrud R, Borg-Graham L, Storm JF., J. Physiol. (Lond.) 521 Pt 1(), 1999
PMID: 10562340
Physiology of electrosensory lateral line lobe neurons in Gnathonemus petersii.
Sugawara Y, Grant K, Han V, Bell CC., J. Exp. Biol. 202(Pt 10), 1999
PMID: 10210670
Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo.
Svoboda K, Helmchen F, Denk W, Tank DW., Nat. Neurosci. 2(1), 1999
PMID: 10195182
Oscillatory burst discharge generated through conditional backpropagation of dendritic spikes.
Turner RW, Lemon N, Doiron B, Rashid AJ, Morales E, Longtin A, Maler L, Dunn RJ., J. Physiol. Paris 96(5-6), 2002
PMID: 14692499
Oscillatory burst discharge generated through conditional backpropagation of dendritic spikes.
Turner RW, Lemon N, Doiron B, Rashid AJ, Morales E, Longtin A, Maler L, Dunn RJ., J. Physiol. Paris 96(5-6), 2002
PMID: 14692499
TTX-sensitive dendritic sodium channels underlie oscillatory discharge in a vertebrate sensory neuron.
Turner RW, Maler L, Deerinck T, Levinson SR, Ellisman MH., J. Neurosci. 14(11 Pt 1), 1994
PMID: 7965050
Propagation of action potentials in dendrites depends on dendritic morphology.
Vetter P, Roth A, Hausser M., J. Neurophysiol. 85(2), 2001
PMID: 11160523
Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo.
Waters J, Larkum M, Sakmann B, Helmchen F., J. Neurosci. 23(24), 2003
PMID: 13679425
Backpropagating action potentials in neurones: measurement, mechanisms and potential functions.
Waters J, Schaefer A, Sakmann B., Prog. Biophys. Mol. Biol. 87(1), 2005
PMID: 15471594
Comparative distribution of voltage-gated sodium channel proteins in human brain.
Whitaker WR, Faull RL, Waldvogel HJ, Plumpton CJ, Emson PC, Clare JJ., Brain Res. Mol. Brain Res. 88(1-2), 2001
PMID: 11295230
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18992811
PubMed | Europe PMC

Suchen in

Google Scholar