Electric imaging through active electrolocation: implication for the analysis of complex scenes

Engelmann J, Bacelo J, Metzen M, Pusch R, Bouton B, Migliaro A, Caputi A, Budelli R, Grant K, Emde von der G (2008)
Biol Cybern 98(6): 519-539.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Engelmann, JacobUniBi ; Bacelo, J.; Metzen, M.; Pusch, R.; Bouton, B.; Migliaro, A.; Caputi, A.; Budelli, R.; Grant, K.; Emde von der, G.
Abstract / Bemerkung
The electric sense of mormyrids is often regarded as an adaptation to conditions unfavourable for vision and in these fish it has become the dominant sense for active orientation and communication tasks. With this sense, fish can detect and distinguish the electrical properties of the close environment, measure distance, perceive the 3-D shape of objects and discriminate objects according to distance or size and shape, irrespective of conductivity, thus showing a degree of abstraction regarding the interpretation of sensory stimuli. The physical properties of images projected on the sensory surface by the fish's own discharge reveal a "Mexican hat" opposing centre-surround profile. It is likely that computation of the image amplitude to slope ratio is used to measure distance, while peak width and slope give measures of shape and contrast. Modelling has been used to explore how the images of multiple objects superimpose in a complex manner. While electric images are by nature distributed, or 'blurred', behavioural strategies orienting sensory surfaces and the neural architecture of sensory processing networks both contribute to resolving potential ambiguities. Rostral amplification is produced by current funnelling in the head and chin appendage regions, where high density electroreceptor distributions constitute foveal regions. Central magnification of electroreceptive pathways from these regions particularly favours the detection of capacitive properties intrinsic to potential living prey. Swimming movements alter the amplitude and contrast of pre-receptor object-images but image modulation is normalised by central gain-control mechanisms that maintain excitatory and inhibitory balance, removing the contrast-ambiguity introduced by self-motion in much the same way that contrast gain-control is achieved in vision.
Erscheinungsjahr
2008
Zeitschriftentitel
Biol Cybern
Band
98
Ausgabe
6
Seite(n)
519-539
ISSN
0340-1200
eISSN
1432-0770
Page URI
https://pub.uni-bielefeld.de/record/1998919

Zitieren

Engelmann J, Bacelo J, Metzen M, et al. Electric imaging through active electrolocation: implication for the analysis of complex scenes. Biol Cybern. 2008;98(6):519-539.
Engelmann, J., Bacelo, J., Metzen, M., Pusch, R., Bouton, B., Migliaro, A., Caputi, A., et al. (2008). Electric imaging through active electrolocation: implication for the analysis of complex scenes. Biol Cybern, 98(6), 519-539. https://doi.org/10.1007/s00422-008-0213-5
Engelmann, Jacob, Bacelo, J., Metzen, M., Pusch, R., Bouton, B., Migliaro, A., Caputi, A., Budelli, R., Grant, K., and Emde von der, G. 2008. “Electric imaging through active electrolocation: implication for the analysis of complex scenes”. Biol Cybern 98 (6): 519-539.
Engelmann, J., Bacelo, J., Metzen, M., Pusch, R., Bouton, B., Migliaro, A., Caputi, A., Budelli, R., Grant, K., and Emde von der, G. (2008). Electric imaging through active electrolocation: implication for the analysis of complex scenes. Biol Cybern 98, 519-539.
Engelmann, J., et al., 2008. Electric imaging through active electrolocation: implication for the analysis of complex scenes. Biol Cybern, 98(6), p 519-539.
J. Engelmann, et al., “Electric imaging through active electrolocation: implication for the analysis of complex scenes”, Biol Cybern, vol. 98, 2008, pp. 519-539.
Engelmann, J., Bacelo, J., Metzen, M., Pusch, R., Bouton, B., Migliaro, A., Caputi, A., Budelli, R., Grant, K., Emde von der, G.: Electric imaging through active electrolocation: implication for the analysis of complex scenes. Biol Cybern. 98, 519-539 (2008).
Engelmann, Jacob, Bacelo, J., Metzen, M., Pusch, R., Bouton, B., Migliaro, A., Caputi, A., Budelli, R., Grant, K., and Emde von der, G. “Electric imaging through active electrolocation: implication for the analysis of complex scenes”. Biol Cybern 98.6 (2008): 519-539.

17 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Motion parallax in electric sensing.
Pedraja F, Hofmann V, Lucas KM, Young C, Engelmann J, Lewis JE., Proc Natl Acad Sci U S A 115(3), 2018
PMID: 29295924
Population Coding and Correlated Variability in Electrosensory Pathways.
Hofmann V, Chacron MJ., Front Integr Neurosci 12(), 2018
PMID: 30542271
Sensory Flow as a Basis for a Novel Distance Cue in Freely Behaving Electric Fish.
Hofmann V, Sanguinetti-Scheck JI, Gómez-Sena L, Engelmann J., J Neurosci 37(2), 2017
PMID: 28077710
The slow pathway in the electrosensory lobe of Gymnotus omarorum: field potentials and unitary activity.
Pereira AC, Rodríguez-Cattáneo A, Caputi AA., J Physiol Paris 108(2-3), 2014
PMID: 25088503
Computational modeling of electric imaging in weakly electric fish: insights for physiology, behavior and evolution.
Gómez-Sena L, Pedraja F, Sanguinetti-Scheck JI, Budelli R., J Physiol Paris 108(2-3), 2014
PMID: 25245199
Motor patterns during active electrosensory acquisition.
Hofmann V, Geurten BR, Sanguinetti-Scheck JI, Gómez-Sena L, Engelmann J., Front Behav Neurosci 8(), 2014
PMID: 24904337
Electric imaging through evolution, a modeling study of commonalities and differences.
Pedraja F, Aguilera P, Caputi AA, Budelli R., PLoS Comput Biol 10(7), 2014
PMID: 25010765
Mind the gap: the minimal detectable separation distance between two objects during active electrolocation.
Fechler K, Holtkamp D, Neusel G, Sanguinetti-Scheck JI, Budelli R, von der Emde G., J Fish Biol 81(7), 2012
PMID: 23252738
3-Dimensional Scene Perception during Active Electrolocation in a Weakly Electric Pulse Fish.
von der Emde G, Behr K, Bouton B, Engelmann J, Fetz S, Folde C., Front Behav Neurosci 4(), 2010
PMID: 20577635
Active sensing: Pre-receptor mechanisms and behavior in electric fish.
Engelmann J, Pusch R, von der Emde G., Commun Integr Biol 1(1), 2008
PMID: 19704784
Rooted in behaviour.
Krahe R., J Physiol Paris 102(4-6), 2008
PMID: 18992331
Receptive field properties of neurons in the electrosensory lateral line lobe of the weakly electric fish, Gnathonemus petersii.
Metzen MG, Engelmann J, Bacelo J, Grant K, von der Emde G., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194(12), 2008
PMID: 18855000
Functional foveae in an electrosensory system.
Bacelo J, Engelmann J, Hollmann M, von der Emde G, Grant K., J Comp Neurol 511(3), 2008
PMID: 18803238

71 References

Daten bereitgestellt von Europe PubMed Central.

The information content of receptive fields.
Adelman TL, Bialek W, Olberg RM., Neuron 40(4), 2003
PMID: 14622585

C, 1997
Preferential representation of the fovea in the primary visual cortex.
Azzopardi P, Cowey A., Nature 361(6414), 1993
PMID: 7680108
Modeling the electric field of weakly electric fish.
Babineau D, Longtin A, Lewis JE., J. Exp. Biol. 209(Pt 18), 2006
PMID: 16943504
Spatial acuity and prey detection in weakly electric fish.
Babineau D, Lewis JE, Longtin A., PLoS Comput. Biol. 3(3), 2007
PMID: 17335346

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

P, Un Ensemble de courbes qui font monter une droite. Biol Cybern 59(), 1988

J, J Comp Physiol A 144(), 1981

J, J Comp Physiol A 144(), 1981
An efference copy which is modified by reafferent input.
Bell CC., Science 214(4519), 1981
PMID: 7291985
Memory-based expectations in electrosensory systems.
Bell CC., Curr. Opin. Neurobiol. 11(4), 2001
PMID: 11502396
Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish: I. Morphology.
Bell CC, Zakon H, Finger TE., J. Comp. Neurol. 286(3), 1989
PMID: 2768566

CC, Brain Behav Evol 50(), 1997
Peripheral electrosensory imaging by weakly electric fish.
Caputi AA, Budelli R., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(6), 2006
PMID: 16501980
The electric image in weakly electric fish: physical images of resistive objects in Gnathonemus petersii.
Caputi AA, Budelli R, Grant K, Bell CC., J. Exp. Biol. 201(Pt 14), 1998
PMID: 9639586
Electroreception in Gymnotus carapo: pre-receptor processing and the distribution of electroreceptor types.
Castello ME, Aguilera PA, Trujillo-Cenoz O, Caputi AA., J. Exp. Biol. 203(Pt 21), 2000
PMID: 11023848
Non-classical receptive field mediates switch in a sensory neuron's frequency tuning.
Chacron MJ, Doiron B, Maler L, Longtin A, Bastian J., Nature 423(6935), 2003
PMID: 12721628

L, J comp Physiol A 191(), 2005

S, J Fish Biology 50(), 1997
Source location encoding in the fish lateral line canal.
Curcic-Blake B, van Netten SM., J. Exp. Biol. 209(Pt 8), 2006
PMID: 16574811
Size constancy in goldfish (Carassius auratus).
Douglas RH, Eva J, Guttridge N., Behav. Brain Res. 30(1), 1988
PMID: 3166706
Visually guided orientation in flies: case studies in computational neuroethology.
Egelhaaf M, Boddeker N, Kern R, Kretzberg J, Lindemann JP, Warzecha AK., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 189(6), 2003
PMID: 12750938

J, J Com Physiol A 194(1), 2007

W, Z Vergl Physiol 54(), 1967

W, J Comp Physiol 87(), 1973

W, 1977

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
A place theory of sound localization.
JEFFRESS LA., J Comp Physiol Psychol 41(1), 1948
PMID: 18904764

AJ, 1974
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J. Neurophysiol. 96(3), 2006
PMID: 16687623

AUTHOR UNKNOWN, 0

HW, Ann NY Acad Sci 188(), 1971

HW, J Exp Biol 35(), 1958

HW, J Exp Biol 35(), 1958

DB, J Comp Physiol A 113(), 1977
Theoretical analysis of pre-receptor image conditioning in weakly electric fish.
Migliaro A, Caputi AA, Budelli R., PLoS Comput. Biol. 1(2), 2005
PMID: 16110331

V, 1974

AUTHOR UNKNOWN, 0
Active sensing in a mormyrid fish: electric images and peripheral modifications of the signal carrier give evidence of dual foveation.
Pusch R, von der Emde G, Hollmann M, Bacelo J, Nobel S, Grant K, Engelmann J., J. Exp. Biol. 211(Pt 6), 2008
PMID: 18310118

P, Ann Mus R Afr Cent Tervuren (Belg) Ser 8(190), 1971

B, J Com Physiol A 178(), 1996

F, 1965

AUTHOR UNKNOWN, 0
Electric images of two low resistance objects in weakly electric fish.
Rother D, Migliaro A, Canetti R, Gomez L, Caputi A, Budelli R., BioSystems 71(1-2), 2003
PMID: 14568217
Effects of sensing behavior on a latency code.
Sawtell NB, Williams A, Roberts PD, von der Emde G, Bell CC., J. Neurosci. 26(32), 2006
PMID: 16899717

S, J Comp Physiol A 186(), 2001

SM, Trends Neurosci 2(), 1979

AUTHOR UNKNOWN, 0

T, Physiol Behav 2(), 1967
Non-visual environmental imaging and object detection through active electrolocation in weakly electric fish.
von der Emde G., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(6), 2006
PMID: 16645886

G, J Comp Physiol A 175(), 1994

G, J Exp Biology 210(), 2007
Electric fish measure distance in the dark.
von der Emde G, Schwarz S, Gomez L, Budelli R, Grant K., Nature 395(6705), 1998
PMID: 9804420
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18491164
PubMed | Europe PMC

Suchen in

Google Scholar