3-Dimensional Scene Perception during Active Electrolocation in a Weakly Electric Pulse Fish

von der Emde G, Behr K, Bouton B, Engelmann J, Fetz S, Folde C (2010)
Frontiers in behavioral neuroscience 4: 26.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
von der Emde , G.; Behr, K.; Bouton, B.; Engelmann, JacobUniBi ; Fetz, S.; Folde, C.
Abstract / Bemerkung
Weakly electric fish use active electrolocation for object detection and orientation in their environment even in complete darkness. The African mormyrid Gnathonemus petersii can detect object parameters, such as material, size, shape, and distance. Here, we tested whether individuals of this species can learn to identify 3-dimensional objects independently of the training conditions and independently of the object's position in space (rotation-invariance; size-constancy). Individual G. petersii were trained in a two-alternative forced-choice procedure to electrically discriminate between a 3-dimensional object (S+) and several alternative objects (S-). Fish were then tested whether they could identify the S+ among novel objects and whether single components of S+ were sufficient for recognition. Size-constancy was investigated by presenting the S+ together with a larger version at different distances. Rotation-invariance was tested by rotating S+ and/or S- in 3D. Our results show that electrolocating G. petersii could (1) recognize an object independently of the S- used during training. When only single components of a complex S+ were offered, recognition of S+ was more or less affected depending on which part was used. (2) Object-size was detected independently of object distance, i.e. fish showed size-constancy. (3) The majority of the fishes tested recognized their S+ even if it was rotated in space, i.e. these fishes showed rotation-invariance. (4) Object recognition was restricted to the near field around the fish and failed when objects were moved more than about 4 cm away from the animals. Our results indicate that even in complete darkness our G. petersii were capable of complex 3-dimensional scene perception using active electrolocation.
Erscheinungsjahr
2010
Zeitschriftentitel
Frontiers in behavioral neuroscience
Band
4
Seite(n)
26
ISSN
1662-5153
eISSN
1662-5153
Page URI
https://pub.uni-bielefeld.de/record/1998910

Zitieren

von der Emde G, Behr K, Bouton B, Engelmann J, Fetz S, Folde C. 3-Dimensional Scene Perception during Active Electrolocation in a Weakly Electric Pulse Fish. Frontiers in behavioral neuroscience. 2010;4:26.
von der Emde, G., Behr, K., Bouton, B., Engelmann, J., Fetz, S., & Folde, C. (2010). 3-Dimensional Scene Perception during Active Electrolocation in a Weakly Electric Pulse Fish. Frontiers in behavioral neuroscience, 4, 26. https://doi.org/10.3389/fnbeh.2010.00026
von der Emde, G., Behr, K., Bouton, B., Engelmann, J., Fetz, S., and Folde, C. (2010). 3-Dimensional Scene Perception during Active Electrolocation in a Weakly Electric Pulse Fish. Frontiers in behavioral neuroscience 4, 26.
von der Emde, G., et al., 2010. 3-Dimensional Scene Perception during Active Electrolocation in a Weakly Electric Pulse Fish. Frontiers in behavioral neuroscience, 4, p 26.
G. von der Emde, et al., “3-Dimensional Scene Perception during Active Electrolocation in a Weakly Electric Pulse Fish”, Frontiers in behavioral neuroscience, vol. 4, 2010, pp. 26.
von der Emde, G., Behr, K., Bouton, B., Engelmann, J., Fetz, S., Folde, C.: 3-Dimensional Scene Perception during Active Electrolocation in a Weakly Electric Pulse Fish. Frontiers in behavioral neuroscience. 4, 26 (2010).
von der Emde, G., Behr, K., Bouton, B., Engelmann, Jacob, Fetz, S., and Folde, C. “3-Dimensional Scene Perception during Active Electrolocation in a Weakly Electric Pulse Fish”. Frontiers in behavioral neuroscience 4 (2010): 26.

12 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The Mormyrid Optic Tectum Is a Topographic Interface for Active Electrolocation and Visual Sensing.
Zeymer M, von der Emde G, Wullimann MF., Front Neuroanat 12(), 2018
PMID: 30327593
Population Coding and Correlated Variability in Electrosensory Pathways.
Hofmann V, Chacron MJ., Front Integr Neurosci 12(), 2018
PMID: 30542271
Cross-modal object recognition and dynamic weighting of sensory inputs in a fish.
Schumacher S, Burt de Perera T, Thenert J, von der Emde G., Proc Natl Acad Sci U S A 113(27), 2016
PMID: 27313211
Temporal Code-Driven Stimulation: Definition and Application to Electric Fish Signaling.
Lareo A, Forlim CG, Pinto RD, Varona P, Rodriguez FB., Front Neuroinform 10(), 2016
PMID: 27766078
Delay-Dependent Response in Weakly Electric Fish under Closed-Loop Pulse Stimulation.
Forlim CG, Pinto RD, Varona P, Rodríguez FB., PLoS One 10(10), 2015
PMID: 26473597
Motor patterns during active electrosensory acquisition.
Hofmann V, Geurten BR, Sanguinetti-Scheck JI, Gómez-Sena L, Engelmann J., Front Behav Neurosci 8(), 2014
PMID: 24904337
Perception and coding of envelopes in weakly electric fishes.
Stamper SA, Fortune ES, Chacron MJ., J Exp Biol 216(pt 13), 2013
PMID: 23761464

56 References

Daten bereitgestellt von Europe PubMed Central.

Perceived size and spatial coding.
Arnold DH, Birt A, Wallis TS., J. Neurosci. 28(23), 2008
PMID: 18524899
Functional foveae in an electrosensory system.
Bacelo J, Engelmann J, Hollmann M, von der Emde G, Grant K., J. Comp. Neurol. 511(3), 2008
PMID: 18803238
Electrosensory organisms
Bastian J.., 1994
“Plasticity of sense organs and brain,”
Bastian J., Zakon H.., 2005
Correlation versus gradient type motion detectors: the pros and cons.
Borst A., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 362(1479), 2007
PMID: 17255025
Fish can encode order in their spatial map
Burt T.., 2004
Active electroreception in Gymnotus omari: imaging, object discrimination, and early processing of actively generated signals.
Caputi AA, Castello ME, Aguilera PA, Pereira C, Nogueira J, Rodriguez-Cattaneo A, Lezcano C., J. Physiol. Paris 102(4-6), 2008
PMID: 18992336
Peripheral electrosensory imaging by weakly electric fish.
Caputi AA, Budelli R., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(6), 2006
PMID: 16501980
The electric image in weakly electric fish: physical images of resistive objects in Gnathonemus petersii.
Caputi AA, Budelli R, Grant K, Bell CC., J. Exp. Biol. 201(Pt 14), 1998
PMID: 9639586
Spectral sensitivity of the weakly discharging electric fish Gnathonemus petersii using its electric organ discharges as the response measure
Ciali S., Gordon J., Moller P.., 1997
“Pigs in space: how we recognize rotated objects,”
Corballis M., Milivojevic B., Harris I.., 2006
Multidimensional Scaling
Davison M.., 1983
Size constancy in goldfish (Carassius auratus).
Douglas RH, Eva J, Guttridge N., Behav. Brain Res. 30(1), 1988
PMID: 3166706
Honeybee (Apis mellifera) vision can discriminate between and recognise images of human faces.
Dyer AG, Neumeyer C, Chittka L., J. Exp. Biol. 208(Pt 24), 2005
PMID: 16326952
Electric imaging through active electrolocation: implication for the analysis of complex scenes.
Engelmann J, Bacelo J, Metzen M, Pusch R, Bouton B, Migliaro A, Caputi A, Budelli R, Grant K, von der Emde G., Biol Cybern 98(6), 2008
PMID: 18491164
Object-oriented echo perception and cortical representation in echolocating bats.
Firzlaff U, Schuchmann M, Grunwald JE, Schuller G, Wiegrebe L., PLoS Biol. 5(5), 2007
PMID: 17425407
Chance orders of alternating stimuli in visual discrimination experiments
Gellermann L.., 1933
Animals roll around the clock: the rotation invariance of ultrarapid visual processing
Guyonneau R., Kirchner H., Thorpe S.., 2006
Rotational invariance in visual pattern recognition by pigeons and humans.
Hollard VD, Delius JD., Science 218(4574), 1982
PMID: 7134976
Size and position invariance of neuronal responses in monkey inferotemporal cortex.
Ito M, Tamura H, Fujita I, Tanaka K., J. Neurophysiol. 73(1), 1995
PMID: 7714567
The time to name disoriented natural objects
Jolicoeur P.., 1985
Mental rotation and rotational invariance in the Rhesus monkey (Macaca mulatta).
Kohler C, Hoffmann KP, Dehnhardt G, Mauck B., Brain Behav. Evol. 66(3), 2005
PMID: 16088100
Learning and neural plasticity in visual object recognition.
Kourtzi Z, DiCarlo JJ., Curr. Opin. Neurobiol. 16(2), 2006
PMID: 16563736
Dim light vision--morphological and functional adaptations of the eye of the mormyrid fish, Gnathonemus petersii.
Landsberger M, von der Emde G, Haverkate D, Schuster S, Gentsch J, Ulbricht E, Reichenbach A, Makarov F, Wagner HJ., J. Physiol. Paris 102(4-6), 2008
PMID: 18992335
Generalization of convex shapes by bees: what are shapes made of?
Lehrer M, Campan R., J. Exp. Biol. 208(Pt 17), 2005
PMID: 16109886
Sensory, learned, and cognitive mechanisms of size perception.
Leibowitz HW., Ann. N. Y. Acad. Sci. 188(), 1971
PMID: 5288869
The mechanism of object location in Gymnarchus niloticus and similar fish
Lissmann H., Machin K.., 1958
Visual object recognition.
Logothetis NK, Sheinberg DL., Annu. Rev. Neurosci. 19(), 1996
PMID: 8833455
Receptive field properties of neurons in the electrosensory lateral line lobe of the weakly electric fish, Gnathonemus petersii.
Metzen MG, Engelmann J, Bacelo J, Grant K, von der Emde G., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 194(12), 2008
PMID: 18855000
Theoretical analysis of pre-receptor image conditioning in weakly electric fish.
Migliaro A, Caputi AA, Budelli R., PLoS Comput. Biol. 1(2), 2005
PMID: 16110331
Electric Fishes
Moller P.., 1995
Visual object understanding.
Palmeri TJ, Gauthier I., Nat. Rev. Neurosci. 5(4), 2004
PMID: 15034554
“Imaging with electricity: how weakly electric fish might perceive objects,”
Rasnow B., Bower J.., 1997
“The history of size constancy and size illusions,”
Ross H., Plug C.., 1998
Using functional magnetic resonance imaging to assess adaptation and size invariance of shape processing by humans and monkeys.
Sawamura H, Georgieva S, Vogels R, Vanduffel W, Orban GA., J. Neurosci. 25(17), 2005
PMID: 15858056
Archer fish learn to compensate for complex optical distortions to determine the absolute size of their aerial prey.
Schuster S, Rossel S, Schmidtmann A, Jager I, Poralla J., Curr. Biol. 14(17), 2004
PMID: 15341743
Mental rotation of three-dimensional objects.
Shepard RN, Metzler J., Science 171(3972), 1971
PMID: 5540314
Pattern recognition in the honeybee: recent progress
Srinivasan M.., 1994
Three-dimensional object recognition is viewpoint dependent.
Tarr MJ, Williams P, Hayward WG, Gauthier I., Nat. Neurosci. 1(4), 1998
PMID: 10195159
“The morpho-functional organization of the retina of the elephantfish (Gnathonemus petersii),”
Ulbricht E., Makarov F., Grosche J., Reichenbach A., Francke M.., 2003
Mental rotation versus invariant features in object perception from different viewpoints: an fMRI study.
Vanrie J, Beatse E, Wagemans J, Sunaert S, Van Hecke P., Neuropsychologia 40(7), 2002
PMID: 11900744
Electrolocation of capacitive objects in four species of pulse-type weakly electric fish. II. Electric signalling behavior
von G.., 1992
Non-visual environmental imaging and object detection through active electrolocation in weakly electric fish.
von der Emde G., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(6), 2006
PMID: 16645886
Active electrolocation in Gnathonemus petersii: behaviour, sensory performance, and receptor systems.
von der Emde G, Amey M, Engelmann J, Fetz S, Folde C, Hollmann M, Metzen M, Pusch R., J. Physiol. Paris 102(4-6), 2008
PMID: 18992334
Perception of electric properties of objects in electrolocating weakly electric fish: two-dimensional similarity scaling reveals a City-Block metric
von G., Ronacher B.., 1994
Electric fish measure distance in the dark.
von der Emde G, Schwarz S, Gomez L, Budelli R, Grant K., Nature 395(6705), 1998
PMID: 9804420

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 20577635
PubMed | Europe PMC

Suchen in

Google Scholar