Active electrolocation in Gnathonemus petersii: behaviour, sensory performance, and receptor systems

von der Emde G, Amey M, Engelmann J, Fetz S, Folde C, Hollmann M, Metzen M, Pusch R (2008)
J Physiol Paris 102(4-6): 279-290.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
von der Emde, G.; Amey, M.; Engelmann, JacobUniBi ; Fetz, S.; Folde, C.; Hollmann, M.; Metzen, M.; Pusch, R.
Abstract / Bemerkung
Weakly electric fish can serve as model systems for active sensing because they actively emit electric signals into the environment, which they also perceive with more than 2000 electroreceptor organs (mormyromasts) distributed over almost their entire skin surface. In a process called active electrolocation, animals are able to detect and analyse objects in their environment, which allows them to perceive a detailed electrical picture of their surroundings even in complete darkness. The African mormyrid fish Gnathonemus petersii can not only detect nearby objects, but in addition can perceive other properties such as their distance, their complex electrical impedance, and their three-dimensional shape. Because most of the sensory signals the fish perceive during their nightly activity period are self-produced, evolution has shaped and adapted the mechanisms for signal production, signal perception and signal analysis by the brain. Like in many other sensory systems, so-called prereceptor mechanisms exist, which passively improve the sensory signals in such a way that the signal carrier is optimized for the extraction of relevant sensory information. In G. petersii prereceptor mechanisms include properties of the animal's skin and internal tissue and the shape of the fish's body. These lead to a specific design of the signal carrier at different skin regions of the fish, preparing them to perform certain detection tasks. Prereceptor mechanisms also ensure that the moveable skin appendix of G. petersii, the 'Schnauzenorgan', receives an optimal sensory signal during all stages of its movement. Another important aspect of active sensing in G. petersii concerns the locomotor strategies during electrolocation. When foraging, the animals adopt a particular position with the body slanted forward bringing the so-called 'nasal region' in a position to examine the environment in front of and at the side of the fish. Simultaneously, the Schnauzenorgan performs rhythmic left-right searching movements. When an object of interest is encountered, the Schnauzenorgan is brought in a twitching movement towards the object and is moved over it for further exploration. The densities of electroreceptor organs is extraordinary high at the Schnauzenorgan and, to a lesser extend, at the nasal region. In these so-called foveal regions, the mormyromasts have a different morphology compared to other parts of the electroreceptive skin. Our results on mormyromast density and morphology, prereceptor mechanisms and electric images, central processing of electroreceptive information, and on behavioural strategies of G. petersii lead us to formulate the hypothesis that these fish possess two separate electric foveae, each of which is specialized for certain perceptional tasks.
Erscheinungsjahr
2008
Zeitschriftentitel
J Physiol Paris
Band
102
Ausgabe
4-6
Seite(n)
279-290
ISSN
0928-4257
Page URI
https://pub.uni-bielefeld.de/record/1998901

Zitieren

von der Emde G, Amey M, Engelmann J, et al. Active electrolocation in Gnathonemus petersii: behaviour, sensory performance, and receptor systems. J Physiol Paris. 2008;102(4-6):279-290.
von der Emde, G., Amey, M., Engelmann, J., Fetz, S., Folde, C., Hollmann, M., Metzen, M., et al. (2008). Active electrolocation in Gnathonemus petersii: behaviour, sensory performance, and receptor systems. J Physiol Paris, 102(4-6), 279-290. https://doi.org/10.1016/j.jphysparis.2008.10.017
von der Emde, G., Amey, M., Engelmann, Jacob, Fetz, S., Folde, C., Hollmann, M., Metzen, M., and Pusch, R. 2008. “Active electrolocation in Gnathonemus petersii: behaviour, sensory performance, and receptor systems”. J Physiol Paris 102 (4-6): 279-290.
von der Emde, G., Amey, M., Engelmann, J., Fetz, S., Folde, C., Hollmann, M., Metzen, M., and Pusch, R. (2008). Active electrolocation in Gnathonemus petersii: behaviour, sensory performance, and receptor systems. J Physiol Paris 102, 279-290.
von der Emde, G., et al., 2008. Active electrolocation in Gnathonemus petersii: behaviour, sensory performance, and receptor systems. J Physiol Paris, 102(4-6), p 279-290.
G. von der Emde, et al., “Active electrolocation in Gnathonemus petersii: behaviour, sensory performance, and receptor systems”, J Physiol Paris, vol. 102, 2008, pp. 279-290.
von der Emde, G., Amey, M., Engelmann, J., Fetz, S., Folde, C., Hollmann, M., Metzen, M., Pusch, R.: Active electrolocation in Gnathonemus petersii: behaviour, sensory performance, and receptor systems. J Physiol Paris. 102, 279-290 (2008).
von der Emde, G., Amey, M., Engelmann, Jacob, Fetz, S., Folde, C., Hollmann, M., Metzen, M., and Pusch, R. “Active electrolocation in Gnathonemus petersii: behaviour, sensory performance, and receptor systems”. J Physiol Paris 102.4-6 (2008): 279-290.

9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Cholinergic Sensorimotor Integration Regulates Olfactory Steering.
Liu H, Yang W, Wu T, Duan F, Soucy E, Jin X, Zhang Y., Neuron 97(2), 2018
PMID: 29290549
The Mormyrid Optic Tectum Is a Topographic Interface for Active Electrolocation and Visual Sensing.
Zeymer M, von der Emde G, Wullimann MF., Front Neuroanat 12(), 2018
PMID: 30327593
Plasticity varies with boldness in a weakly-electric fish.
Kareklas K, Arnott G, Elwood RW, Holland RA., Front Zool 13(), 2016
PMID: 27274354
3-Dimensional Scene Perception during Active Electrolocation in a Weakly Electric Pulse Fish.
von der Emde G, Behr K, Bouton B, Engelmann J, Fetz S, Folde C., Front Behav Neurosci 4(), 2010
PMID: 20577635
The Schnauzenorgan-response of Gnathonemus petersii.
Engelmann J, Nöbel S, Röver T, Emde GV., Front Zool 6(), 2009
PMID: 19772622

76 References

Daten bereitgestellt von Europe PubMed Central.

Histologische untersuchung der mormyromasten verschiedener hautregionen bei Gnathonemus petersii
Amey, In Institut für Zoologie (Bonn, Universiät Bonn) (), 2006
Functional foveae in an electrosensory system.
Bacelo J, Engelmann J, Hollmann M, von der Emde G, Grant K., J. Comp. Neurol. 511(3), 2008
PMID: 18803238
Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish: I. Morphology.
Bell CC, Zakon H, Finger TE., J. Comp. Neurol. 286(3), 1989
PMID: 2768566
Electroreceptors in mormyrids.
Bennett MV., Cold Spring Harb. Symp. Quant. Biol. 30(), 1965
PMID: 5219479
Food and feeding of the mormyrid fishes of Lake Kainji, Nigeria, with special reference to seasonal variation and interspecific differences
Blake, J. Fish Biol. 11(), 1977

AUTHOR UNKNOWN, 0
[Electric organ of Gnathonemus (Mormyridae). Electroplaque and innervation]
Bruns V., Z Zellforsch Mikrosk Anat 122(4), 1971
PMID: 4330617
Peripheral electrosensory imaging by weakly electric fish.
Caputi AA, Budelli R., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(6), 2006
PMID: 16501980
The electric image in weakly electric fish: physical images of resistive objects in Gnathonemus petersii.
Caputi AA, Budelli R, Grant K, Bell CC., J. Exp. Biol. 201(Pt 14), 1998
PMID: 9639586
Electrolocation and electrocommunication in pulse gymnotids: signal carriers, pre-receptor mechanisms and the electrosensory mosaic.
Caputi AA, Castello ME, Aguilera P, Trujillo-Cenoz O., J. Physiol. Paris 96(5-6), 2002
PMID: 14692497

AUTHOR UNKNOWN, 0
Electroreception in Gymnotus carapo: pre-receptor processing and the distribution of electroreceptor types.
Castello ME, Aguilera PA, Trujillo-Cenoz O, Caputi AA., J. Exp. Biol. 203(Pt 21), 2000
PMID: 11023848
Electroreception in Gymnotus carapo: pre-receptor processing and the distribution of electroreceptor types.
Castello ME, Aguilera PA, Trujillo-Cenoz O, Caputi AA., J. Exp. Biol. 203(Pt 21), 2000
PMID: 11023848
Tactile foveation in the star-nosed mole.
Catania KC, Remple FE., Brain Behav. Evol. 63(1), 2004
PMID: 14673194
How birds use their eyes
Friedman, 1975
[The various functional areas of the retina of pigeons]
Galifret Y., Z Zellforsch Mikrosk Anat 86(4), 1968
PMID: 5707293

Garner, 1974
Extrazelluläre ableitungen an ampullären rezeptoren von Gnathonemus petersii
Gertz, In Institut für Zoologie (Bonn, Universität Bonn) (), 2007
Mormyridae
Gosse, 1984
Die beziehungen zwischen elektrorezeptoren, elektrischen organen, seitenlinienorganen und nervensystem bei den mormyridae (Teleostei, Pisces)
Harder, Z. Vergl. Physiol. 59(), 1968
Active sensing capabilities of the rat whisker system
Hartmann, Autonom. Robot 11(), 2001
The projection of the visual field upon the retina of the pigeon.
Hayes BP, Hodos W, Holden AL, Low JC., Vision Res. 27(1), 1987
PMID: 3617545
Eye movements in natural behavior
Hayhoe, Trend Cognit. Sci. (), 2005
Electrolocation of objects in the electric fish Eigenmannia (Rhamphichthyidae, Gymnotoidei)
Heiligenberg, J. Comp. Physiol. 87(), 1973

AUTHOR UNKNOWN, 0
Two electrofoveal regions on the skin of Gnathonemus petersii: morphology, distribution and density of electroreceptor organs
Hollmann, J. Zool. 276(), 2008
Visual field organization and peck localization in the pigeon (Columba livia).
Jager R, Zeigler HP., Behav. Brain Res. 45(1), 1991
PMID: 1764206
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol. 3(6), 2005
PMID: 15884977
Active sensation: insights from the rodent vibrissa sensorimotor system.
Kleinfeld D, Ahissar E, Diamond ME., Curr. Opin. Neurobiol. 16(4), 2006
PMID: 16837190
Active sensing – closing multiple loops
König, Z. Naturforsch. 53c(), 1998
Vestibular, proprioceptive, and haptic contributions to spatial orientation
Lackner, Annu. Rev. Physiol. 56(), 2005
Role and consequences of fish diversity in the functioning of African freshwater ecosystems: a review
Lévêque, Aquat. Living Resour. 8(), 1995
On the function and evolution of electric organs in fish
Lissmann, J. Exp. Biol. 35(), 1958
The mechanism of object location in Gymnarchus niloticus and similar fish
Lissmann, J. Exp. Biol. 35(), 1958

AUTHOR UNKNOWN, 0
Theoretical analysis of pre-receptor image conditioning in weakly electric fish.
Migliaro A, Caputi AA, Budelli R., PLoS Comput. Biol. 1(2), 2005
PMID: 16110331
Sensory acquisition in active sensing systems.
Nelson ME, MacIver MA., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(6), 2006
PMID: 16645885
Seeing more than meets the eye: processing of illusory contours in animals.
Nieder A., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(4), 2002
PMID: 12012096
The schnauzenorgan-response of Gnathonemus petersii
Nöbel, Electrosensory Syst. (Vancouver/Canada) (), 2007
The biology and habits of the mormyrid fishes: Gnathonemus longibarbis, Gvictoriae, Marcusenius grahami, M. nigricans, Petrocephalus catostoma
Okedi, J. Appl. Ecol. 2(), 1965
The food and feeding habits of the small mormyrid fishes of Lake Victoria, East Africa
Okedi, Afr. J. Trop. Hydrobiol. Fish 1(), 1971
Size, scatter and coverage of ganglion cell receptive field centres in the cat retina.
Peichl L, Wassle H., J. Physiol. (Lond.) 291(), 1979
PMID: 480198
The "novelty response" in an electric fish: response properties and habituation.
Post N, von der Emde G., Physiol. Behav. 68(1-2), 1999
PMID: 10627070
Active sensing in a mormyrid fish: electric images and peripheral modifications of the signal carrier give evidence of dual foveation.
Pusch R, von der Emde G, Hollmann M, Bacelo J, Nobel S, Grant K, Engelmann J., J. Exp. Biol. 211(Pt 6), 2008
PMID: 18310118
Etude systematique des organes sensoriels de la peau des mormyriformes (Pisces, Mormyriformes)
Quinet, Ann. Mus. R. Afr. Cent. Tervuren (Belg.) Ser. 8(190), 1971
The effects of simple objects on the electric field of Apteronotus
Rasnow, J. Comp. Physiol. A 178(), 1996

AUTHOR UNKNOWN, 0
From sparks to spikes: information processing in the electrosensory systems of fish.
Sawtell NB, Williams A, Bell CC., Curr. Opin. Neurobiol. 15(4), 2005
PMID: 16009545
Determination of biological impedances
Schwan, 1963
Die schnauzenorgane der mormyriden
Stendell, Zeitschrift f. wiss. Zoologie Abt. A 115(), 1916
Motor programmes and electroreception in mormyrid fish
Toerring, Behav. Ecol. Sociobiol. 4(), 1979
Discrimination of objects through electrolocation in the weakly electric fish, Gnathonemus petersii
von, J. Comp. Physiol. A 167(), 1990
Electrolocation of capacitive objects in four species of pulse-type weakly electric fish II. Electric signalling behavior
von, Ethology 92(), 1992
Capacitance detection in the wave-type electric fish Eigenmannia during active electrolocation
von, J. Comp. Physiol. A 182(), 1998
Waveform tuning of electroreceptor cells in the weakly electric fish, Gnathonemus petersii
von, J. Comp. Physiol. A 181(), 1997
Finding food: Senses involved in foraging for insect larvae in the electric fish, Gnathonemus petersii
von, J. Exp. Biol. 201(), 1998
Electrolocation of capacitive objects in four species of pulse-type weakly electric fish I. Discrimination performance
von, Ethology 91(), 1992
Perception of electric properties of objects in electrolocating weakly electric fish: two-dimensional similarity scaling reveals a City-Block metric
von, J. Comp. Physiol. A 175(), 1994
How the electric fish brain controls the production and analysis of electric signals during active electrolocation
von, Zoology 103(), 2001
Imaging of objects through active electrolocation in Gnathonemus petersii.
von der Emde G, Schwarz S., J. Physiol. Paris 96(5-6), 2002
PMID: 14692491
Electric fish measure distance in the dark.
von der Emde G, Schwarz S, Gomez L, Budelli R, Grant K., Nature 395(6705), 1998
PMID: 9804420
Das reafferenzprinzip
von, Naturwi 37(), 1950
Behavior of animals with passive low-frequency electrosensory systems
Wilkens, 2005
Central mechanisms of temporal analysis in the knollenorgan pathway of mormyrid electric fish
Xu-Friedman MA, Hopkins CD., J. Exp. Biol. 202(# (Pt 10)), 1999
PMID: 10210671

Yarbus, 1967
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18992334
PubMed | Europe PMC

Suchen in

Google Scholar