Precise timing in fly motion vision is mediated by fast components of combined graded and spike signals

Beckers U, Egelhaaf M, Kurtz R (2009)
Neuroscience 160(3): 639-650.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Abstract / Bemerkung
Firing of an individual neuron is determined by the activity of its presynaptic input ensemble. In this study we analyzed how presynaptic signals with different dynamics interact to control postsynaptic activity. In the blowfly's visual system we simultaneously recorded in vivo from an identified motion-sensitive neuron and from elements of the presynaptic ensemble. The presynaptic cells themselves are mutually electrically coupled and convey both graded and spike signals to their common postsynaptic target. We elicited spikes in the postsynaptic neuron by voltage-clamping one of the presynaptic neurons to various holding potentials and then analyzed the time course of the holding current. Current transients in the clamped presynaptic cell were found to coincide with postsynaptic spikes. The current transients were highly variable in amplitude and occasionally absent during postsynaptic spiking. These characteristics indicate that the current transients in the voltage-clamped neuron result from spikes in electrically coupled co-members of the presynaptic ensemble. Our results suggest that electrical coupling among presynaptic neurons mediates synchronization of spikes within the cell ensemble. Moreover, our findings demonstrate that the graded response component of the presynaptic cells effectively controls the postsynaptic firing rate on a coarse scale while the precise timing of the postsynaptic spikes is a consequence of spikes superimposed on the graded signals of the presynaptic neurons.
Erscheinungsjahr
2009
Zeitschriftentitel
Neuroscience
Band
160
Ausgabe
3
Seite(n)
639-650
ISSN
0306-4522
Page URI
https://pub.uni-bielefeld.de/record/1998400

Zitieren

Beckers U, Egelhaaf M, Kurtz R. Precise timing in fly motion vision is mediated by fast components of combined graded and spike signals. Neuroscience. 2009;160(3):639-650.
Beckers, U., Egelhaaf, M., & Kurtz, R. (2009). Precise timing in fly motion vision is mediated by fast components of combined graded and spike signals. Neuroscience, 160(3), 639-650. https://doi.org/10.1016/j.neuroscience.2009.02.045
Beckers, U., Egelhaaf, Martin, and Kurtz, Rafael. 2009. “Precise timing in fly motion vision is mediated by fast components of combined graded and spike signals”. Neuroscience 160 (3): 639-650.
Beckers, U., Egelhaaf, M., and Kurtz, R. (2009). Precise timing in fly motion vision is mediated by fast components of combined graded and spike signals. Neuroscience 160, 639-650.
Beckers, U., Egelhaaf, M., & Kurtz, R., 2009. Precise timing in fly motion vision is mediated by fast components of combined graded and spike signals. Neuroscience, 160(3), p 639-650.
U. Beckers, M. Egelhaaf, and R. Kurtz, “Precise timing in fly motion vision is mediated by fast components of combined graded and spike signals”, Neuroscience, vol. 160, 2009, pp. 639-650.
Beckers, U., Egelhaaf, M., Kurtz, R.: Precise timing in fly motion vision is mediated by fast components of combined graded and spike signals. Neuroscience. 160, 639-650 (2009).
Beckers, U., Egelhaaf, Martin, and Kurtz, Rafael. “Precise timing in fly motion vision is mediated by fast components of combined graded and spike signals”. Neuroscience 160.3 (2009): 639-650.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:57:17Z
MD5 Prüfsumme
cfc4a674b9dfa18eb552c73ab08c4287


5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Visual motion-sensitive neurons in the bumblebee brain convey information about landmarks during a navigational task.
Mertes M, Dittmar L, Egelhaaf M, Boeddeker N., Front Behav Neurosci 8(), 2014
PMID: 25309374
Spikes and ribbon synapses in early vision.
Baden T, Euler T, Weckström M, Lagnado L., Trends Neurosci 36(8), 2013
PMID: 23706152
Temporal and spatial adaptation of transient responses to local features.
O'Carroll DC, Barnett PD, Nordström K., Front Neural Circuits 6(), 2012
PMID: 23087617

51 References

Daten bereitgestellt von Europe PubMed Central.

Approximate is better than “exact” for interval estimation of binomial proportions
Agresti, Am Stat 52(), 1998
Slow oscillations of membrane potential in interneurons that control heartbeat in the medicinal leech
Arbas, J Neurosci 12(), 1987
A rectifying electrotonic synapse in the central nervous system of a vertebrate.
Auerbach AA, Bennett MV., J. Gen. Physiol. 53(2), 1969
PMID: 4303657
Calcium sensitivity of glutamate release in a calyx-type terminal.
Bollmann JH, Sakmann B, Borst JG., Science 289(5481), 2000
PMID: 10937999
Principles of visual motion detection.
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948
Facilitation of presynaptic calcium currents in the rat brainstem.
Borst JG, Sakmann B., J. Physiol. (Lond.) 513 ( Pt 1)(), 1998
PMID: 9782166
Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons.
Cuntz H, Haag J, Forstner F, Segev I, Borst A., Proc. Natl. Acad. Sci. U.S.A. 104(24), 2007
PMID: 17551009
Stimulus history reliably shapes action potential waveforms of cortical neurons.
de Polavieja GG, Harsch A, Kleppe I, Robinson HP, Juusola M., J. Neurosci. 25(23), 2005
PMID: 15944394
The rate of information transfer at graded-potential synapses
De, Nature 379(), 1996
Co-operative action a calcium ions in transmitter release at the neuromuscular junction.
Dodge FA Jr, Rahamimoff R., J. Physiol. (Lond.) 193(2), 1967
PMID: 6065887
Transient and steady-state response properties of movement detectors.
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651
Transmission at the giant motor synapses of the crayfish.
FURSHPAN EJ, POTTER DD., J. Physiol. (Lond.) 145(2), 1959
PMID: 13642302
Graded synaptic transmission between spiking neurons.
Graubard K, Raper JA, Hartline DK., Proc. Natl. Acad. Sci. U.S.A. 77(6), 1980
PMID: 6106194
The intrinsic electrophysiological characteristics of fly lobula plate cells
Haag, J Comput Neurosci 18(), 1997
Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowfly Calliphora erythrocepahala
Hausen, Naturforsch Z 31c(), 1976
Spike responses of 'non-spiking' visual interneurone.
Hengstenberg R., Nature 270(5635), 1977
PMID: 593352
The number and structure of giant vertical cells (VS) in the lobula plate of the blowfly Calliphora erythrocephala
Hengstenberg, J Comp Physiol A 149(), 1982
Transfer of graded potentials at the photoreceptor-interneuron synapse.
Juusola M, Uusitalo RO, Weckstrom M., J. Gen. Physiol. 105(1), 1995
PMID: 7537323
Coding with spike shapes and graded potentials in cortical networks.
Juusola M, Robinson HP, de Polavieja GG., Bioessays 29(2), 2007
PMID: 17226812
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J. Neurophysiol. 96(3), 2006
PMID: 16687623
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol. 3(6), 2005
PMID: 15884977
Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly.
Krapp HG, Hengstenberg B, Hengstenberg R., J. Neurophysiol. 79(4), 1998
PMID: 9535957

Laplace, 1812
Neural coding of natural stimuli: information at sub-millisecond resolution.
Nemenman I, Lewen GD, Bialek W, de Ruyter van Steveninck RR., PLoS Comput. Biol. 4(3), 2008
PMID: 18369423
Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential.
Shu Y, Hasenstaub A, Duque A, Yu Y, McCormick DA., Nature 441(7094), 2006
PMID: 16625207
Transmission mediated with and without spikes at connections between large second-order neurones of locust ocelli
Simmons, J Comp Physiol 147(), 1982
Transmission at voltage-clamped giant synapse of the squid: evidence for cooperativity of presynaptic calcium action.
Smith SJ, Augustine GJ, Charlton MP., Proc. Natl. Acad. Sci. U.S.A. 82(2), 1985
PMID: 2982166
Lobula plate and ocellar interneurons converge onto a cluster of descending neurons leading to neck and leg motor neuropil in Calliphora erythrocephala
Strausfeld, Cell Tissue Res 240(), 1985
A highly Ca2+-sensitive pool of vesicles contributes to linearity at the rod photoreceptor ribbon synapse.
Thoreson WB, Rabl K, Townes-Anderson E, Heidelberger R., Neuron 42(4), 2004
PMID: 15157421
Function and coding in the blowfly H1 neuron during naturalistic optic flow.
van Hateren JH, Kern R, Schwerdtfeger G, Egelhaaf M., J. Neurosci. 25(17), 2005
PMID: 15858060
Temporal precision of the encoding of motion information by visual interneurons.
Warzecha AK, Kretzberg J, Egelhaaf M., Curr. Biol. 8(7), 1998
PMID: 9545194
Neural encoding of visual motion in real-time
Warzecha, 2001
Probable inference, the law of succession, and statistical inference
Wilson, J Am Stat Assoc 22(), 1927
Gain of rod to horizontal cell synaptic transfer: relation to glutamate release and a dihydropyridine-sensitive calcium current.
Witkovsky P, Schmitz Y, Akopian A, Krizaj D, Tranchina D., J. Neurosci. 17(19), 1997
PMID: 9295376
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19264111
PubMed | Europe PMC

Suchen in

Google Scholar