Transcript profiles at different growth stages and tap-root zones identify correlated developmental and metabolic pathways of sugar beet

Bellin D, Schulz B, Rosleff Sörensen T, Salamini F, Schneider K (2007)
Journal of Experimental Botany 58(3): 699-715.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Bellin, Diana; Schulz, Britta; Rosleff Sörensen, ThomasUniBi; Salamini, Francesco; Schneider, Katharina
Abstract / Bemerkung
Field-grown sugar beets were analysed for morphological characters, sucrose content, and reproducible transcript profiles by macroarray analyses with 11,520 unique sugar-beet cDNA targets in two different years. Seasonal differences were partly compensated by expressing sampling dates as thermal time. During early beet development the number of cambial rings, root length, and sucrose concentration had already achieved ater40% of their final values. Sucrose levels rose from 10% to 17% over the thermal time of 1300-1400 degrees Cd with only small changes later when lower concentrations were restricted to the exterior zone at the minimum of the spatial sucrose gradient through the beet. The number of leaves and root diameter followed the same temporal growth pattern, but mass increased until beet maturity at around 2000 degrees Cd. Cluster analysis identified 543 transcripts with reproducible preferential expression between 1300-1400 degrees Cd, and 170 showing the highest transcript levels later. In maturing beets, 373 transcripts were over-represented in the inner zone and 148 in the outer zone. During early development, genes involved in cytoskeletal reorganization and transport processes showed the highest transcript levels. Cell wall biogenesis-, defence-, stress-, and degradation-related transcripts were identified in all samples, and associated with pathogen attack during late development and in the outer zone. Candidates with potential roles in carbohydrate metabolism appeared to serve anaplerotic functions by converting excess intermediates to sucrose production. Transcripts preferentially occurring in sucrose-accumulating young beet cells and newly generated peripheral cells of mature beets are discussed as potential breeding targets to improve sink strength and growth.
Stichworte
macroarray analysis; Light; Plant Roots; tap root formation; Plant Proteins; Molecular Sequence Data; Plant Leaves; Innate; sugar beet; sucrose accumulation; Cell Wall; Immunity; Gene Expression Profiling; Biological Transport; Cytoskeleton; RNA; candidate genes; Messenger; Sucrose; Beta vulgaris
Erscheinungsjahr
2007
Zeitschriftentitel
Journal of Experimental Botany
Band
58
Ausgabe
3
Seite(n)
699-715
ISSN
0022-0957
eISSN
1460-2431
Page URI
https://pub.uni-bielefeld.de/record/1996264

Zitieren

Bellin D, Schulz B, Rosleff Sörensen T, Salamini F, Schneider K. Transcript profiles at different growth stages and tap-root zones identify correlated developmental and metabolic pathways of sugar beet. Journal of Experimental Botany. 2007;58(3):699-715.
Bellin, D., Schulz, B., Rosleff Sörensen, T., Salamini, F., & Schneider, K. (2007). Transcript profiles at different growth stages and tap-root zones identify correlated developmental and metabolic pathways of sugar beet. Journal of Experimental Botany, 58(3), 699-715. https://doi.org/10.1093/jxb/erl245
Bellin, Diana, Schulz, Britta, Rosleff Sörensen, Thomas, Salamini, Francesco, and Schneider, Katharina. 2007. “Transcript profiles at different growth stages and tap-root zones identify correlated developmental and metabolic pathways of sugar beet”. Journal of Experimental Botany 58 (3): 699-715.
Bellin, D., Schulz, B., Rosleff Sörensen, T., Salamini, F., and Schneider, K. (2007). Transcript profiles at different growth stages and tap-root zones identify correlated developmental and metabolic pathways of sugar beet. Journal of Experimental Botany 58, 699-715.
Bellin, D., et al., 2007. Transcript profiles at different growth stages and tap-root zones identify correlated developmental and metabolic pathways of sugar beet. Journal of Experimental Botany, 58(3), p 699-715.
D. Bellin, et al., “Transcript profiles at different growth stages and tap-root zones identify correlated developmental and metabolic pathways of sugar beet”, Journal of Experimental Botany, vol. 58, 2007, pp. 699-715.
Bellin, D., Schulz, B., Rosleff Sörensen, T., Salamini, F., Schneider, K.: Transcript profiles at different growth stages and tap-root zones identify correlated developmental and metabolic pathways of sugar beet. Journal of Experimental Botany. 58, 699-715 (2007).
Bellin, Diana, Schulz, Britta, Rosleff Sörensen, Thomas, Salamini, Francesco, and Schneider, Katharina. “Transcript profiles at different growth stages and tap-root zones identify correlated developmental and metabolic pathways of sugar beet”. Journal of Experimental Botany 58.3 (2007): 699-715.

13 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Sugars en route to the roots. Transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere.
Hennion N, Durand M, Vriet C, Doidy J, Maurousset L, Lemoine R, Pourtau N., Physiol Plant 165(1), 2019
PMID: 29704246
Yield Potential of Sugar Beet - Have We Hit the Ceiling?
Hoffmann CM, Kenter C., Front Plant Sci 9(), 2018
PMID: 29599787
Magnetic resonance imaging of sugar beet taproots in soil reveals growth reduction and morphological changes during foliar Cercospora beticola infestation.
Schmittgen S, Metzner R, Van Dusschoten D, Jansen M, Fiorani F, Jahnke S, Rascher U, Schurr U., J Exp Bot 66(18), 2015
PMID: 25873673
Starch biosynthetic genes and enzymes are expressed and active in the absence of starch accumulation in sugar beet tap-root.
Turesson H, Andersson M, Marttila S, Thulin I, Hofvander P., BMC Plant Biol 14(), 2014
PMID: 24758347
Transcript profiles in sugar beet genotypes uncover timing and strength of defense reactions to Cercospora beticola infection.
Weltmeier F, Mäser A, Menze A, Hennig S, Schad M, Breuer F, Schulz B, Holtschulte B, Nehls R, Stahl DJ., Mol Plant Microbe Interact 24(7), 2011
PMID: 21385013
Post-harvest regulated gene expression and splicing efficiency in storage roots of sugar beet (Beta vulgaris L.).
Rotthues A, Kappler J, Lichtfuss A, Kloos DU, Stahl DJ, Hehl R., Planta 227(6), 2008
PMID: 18324413
Genetic approaches to sustainable pest management in sugar beet (Beta vulgaris)
Zhang C-L, Xu D-C, Jiang X-C, Zhou Y, Cui J, Zhang C-X, Chen D-F, Fowler MR, Elliott MC, Scott NW, Dewar AM, Slater A., Ann Appl Biol 152(2), 2008
PMID: IND44036241

56 References

Daten bereitgestellt von Europe PubMed Central.

Transcriptional regulation of bialaphos biosynthesis in Streptomyces hygroscopicus.
Anzai H, Murakami T, Imai S, Satoh A, Nagaoka K, Thompson CJ., J. Bacteriol. 169(8), 1987
PMID: 3611020
The U-box protein family in plants.
Azevedo C, Santos-Rosa MJ, Shirasu K., Trends Plant Sci. 6(8), 2001
PMID: 11495788
EST sequencing, annotation and macroarray transcriptome analysis identify preferentially root-expressed genes in sugar beet
Bellin, Plant Biology 4(), 2002
Multiplex messenger assay: simultaneous, quantitative measurement of expression of many genes in the context of T cell activation.
Bernard K, Auphan N, Granjeaud S, Victorero G, Schmitt-Verhulst AM, Jordan BR, Nguyen C., Nucleic Acids Res. 24(8), 1996
PMID: 8628675
The multidrug efflux protein NorM is a prototype of a new family of transporters.
Brown MH, Paulsen IT, Skurray RA., Mol. Microbiol. 31(1), 1999
PMID: 9987140
Growth of the plant cell wall.
Cosgrove DJ., Nat. Rev. Mol. Cell Biol. 6(11), 2005
PMID: 16261190
Differential gene expression in Arabidopsis monitored using cDNA arrays.
Desprez T, Amselem J, Caboche M, Hofte H., Plant J. 14(5), 1998
PMID: 9675907
Move it on out with MATEs.
Eckardt NA., Plant Cell 13(7), 2001
PMID: 11449044
Biology and physiology of the sugar-beet plant
Elliott, 1993
Base-calling of automated sequencer traces using phred. I. Accuracy assessment.
Ewing B, Hillier L, Wendl MC, Green P., Genome Res. 8(3), 1998
PMID: 9521921
EXORDIUM--a gene expressed in proliferating cells and with a role in meristem function, identified by promoter trapping in Arabidopsis.
Farrar K, Evans IM, Topping JF, Souter MA, Nielsen JE, Lindsey K., Plant J. 33(1), 2003
PMID: 12943541
Sucrose synthase and sucrose phosphate synthase in sugar beet plants (Beta vulgaris L. ssp altissima)
Fieuw, Journal of Plant Physiology 131(), 1989
Sugar transport and sugar-metabolizing enzymes in sugar storage roots (Beta vulgaris ssp. altissima)
Fieuw, Journal of Plant Physiology 137(), 1990
A DELLAcate balance: the role of gibberellin in plant morphogenesis.
Fleet CM, Sun TP., Curr. Opin. Plant Biol. 8(1), 2005
PMID: 15653404
Synthesis and turnover of folates in plants.
Hanson AD, Gregory JF 3rd., Curr. Opin. Plant Biol. 5(3), 2002
PMID: 11960743
Vacuolar processing enzyme: an executor of plant cell death.
Hara-Nishimura I, Hatsugai N, Nakaune S, Kuroyanagi M, Nishimura M., Curr. Opin. Plant Biol. 8(4), 2005
PMID: 15939660
Construction of a 'unigene' cDNA clone set by oligonucleotide fingerprinting allows access to 25 000 potential sugar beet genes.
Herwig R, Schulz B, Weisshaar B, Hennig S, Steinfath M, Drungowski M, Stahl D, Wruck W, Menze A, O'Brien J, Lehrach H, Radelof U., Plant J. 32(5), 2002
PMID: 12472698
Cloning and expression analysis of sucrose-phosphate synthase from sugar beet (Beta vulgaris L.).
Hesse H, Sonnewald U, Willmitzer L., Mol. Gen. Genet. 247(4), 1995
PMID: 7770061
Expression analysis of a sucrose synthase gene from sugar beet (Beta vulgaris L.).
Hesse H, Willmitzer L., Plant Mol. Biol. 30(5), 1996
PMID: 8639746
Genetical genomics: the added value from segregation.
Jansen RC, Nap JP., Trends Genet. 17(7), 2001
PMID: 11418218
The role of aquaporins in cellular and whole plant water balance.
Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P., Biochim. Biophys. Acta 1465(1-2), 2000
PMID: 10748263
Insertional inactivation of the methionine s-methyltransferase gene eliminates the s-methylmethionine cycle and increases the methylation ratio.
Kocsis MG, Ranocha P, Gage DA, Simon ES, Rhodes D, Peel GJ, Mellema S, Saito K, Awazuhara M, Li C, Meeley RB, Tarczynski MC, Wagner C, Hanson AD., Plant Physiol. 131(4), 2003
PMID: 12692340
Multifunctionality of plant ABC transporters--more than just detoxifiers.
Martinoia E, Klein M, Geisler M, Bovet L, Forestier C, Kolukisaoglu U, Muller-Rober B, Schulz B., Planta 214(3), 2002
PMID: 11855639
The growth and development of the storage root of sugar beet
Milford, Annals of Applied Biology 75(), 1973
The S-Methylmethionine Cycle in Lemna paucicostata.
Mudd SH, Datko AH., Plant Physiol. 93(2), 1990
PMID: 16667513
Syntaxin specificity of cytokinesis in Arabidopsis.
Muller I, Wagner W, Volker A, Schellmann S, Nacry P, Kuttner F, Schwarz-Sommer Z, Mayer U, Jurgens G., Nat. Cell Biol. 5(6), 2003
PMID: 12738961
Identification and characterization of latex-specific proteins in opium poppy.
Nessler CL, Allen RD, Galewsky S., Plant Physiol. 79(2), 1985
PMID: 16664439
Fructose-2,6-bisphosphate: a traffic signal in plant metabolism.
Nielsen TH, Rung JH, Villadsen D., Trends Plant Sci. 9(11), 2004
PMID: 15501181
Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis.
Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, Schoffl F., Plant Physiol. 136(2), 2004
PMID: 15466240
Distinct modes of signal recognition particle interaction with the ribosome.
Pool MR, Stumm J, Fulga TA, Sinning I, Dobberstein B., Science 297(5585), 2002
PMID: 12193787
Functional association between malting quality trait components and cDNA array based expression patterns in barley (Hordeum vulgare L.).
Potokina E, Caspers M, Prasad M, Kota R, Zhang H, Sreenivasulu N, Wang M, Graner A., Mol. Breed. 14(2), 2004
PMID: IND43647704
The S-methylmethionine cycle in angiosperms: ubiquity, antiquity and activity.
Ranocha P, McNeil SD, Ziemak MJ, Li C, Tarczynski MC, Hanson AD., Plant J. 25(5), 2001
PMID: 11309147
VPEgamma exhibits a caspase-like activity that contributes to defense against pathogens.
Rojo E, Martin R, Carter C, Zouhar J, Pan S, Plotnikova J, Jin H, Paneque M, Sanchez-Serrano JJ, Baker B, Ausubel FM, Raikhel NV., Curr. Biol. 14(21), 2004
PMID: 15530390
Mapping QTLs for sucrose content, yield and quality in a sugar beet population fingerprinted by EST-related markers.
Schneider K, Schafer-Pregl R, Borchardt C, Salamini F., Theor. Appl. Genet. 104(6-7), 2002
PMID: 12582619
Complex regulation of ABA biosynthesis in plants.
Seo M, Koshiba T., Trends Plant Sci. 7(1), 2002
PMID: 11804826
Genesis: cluster analysis of microarray data.
Sturn A, Quackenbush J, Trajanoski Z., Bioinformatics 18(1), 2002
PMID: 11836235
Trimming and clustering sugarcane ESTs
Telles, Genetics and Molecular Biology 24(), 2001
Autophagic recycling: lessons from yeast help define the process in plants.
Thompson AR, Vierstra RD., Curr. Opin. Plant Biol. 8(2), 2005
PMID: 15752997
Empirical threshold models of developmental rate: the temperature-sum rule
Thornley, 1990
Combined linkage maps and QTLs in sugar beet (Beta vulgaris L.) from different populations.
Weber WE, Borchardt DC, Koch G., Plant Breed. 118(3), 1999
PMID: IND22025781
Marker analysis for quantitative traits in sugar beet.
Weber WE, Borchardt DC, Koch G., Plant Breed. 119(2), 2000
PMID: IND22090322
Zuckeraufnahme in isolierten Vakuolen und Protoplasten aus dem Speichergewebe von Beta-Rüben
Willenbrink, Berichte der Deutschen Botanischen Gesellschaft 97(), 1984
Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1.
Xu Z, Escamilla-Trevino L, Zeng L, Lalgondar M, Bevan D, Winkel B, Mohamed A, Cheng CL, Shih MC, Poulton J, Esen A., Plant Mol. Biol. 55(3), 2004
PMID: 15604686
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 17307746
PubMed | Europe PMC

Suchen in

Google Scholar