Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes

Rhinow D, Büenfeld M, Weber N-E, Beyer A, Gölzhäuser A, Kühlbrandt W, Hampp N, Turchanin A (2011)
Ultramicroscopy 111(5): 342-349.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Rhinow, Daniel; Büenfeld, MatthiasUniBi; Weber, Nils-Eike; Beyer, AndréUniBi ; Gölzhäuser, ArminUniBi ; Kühlbrandt, Werner; Hampp, Norbert; Turchanin, AndreyUniBi
Erscheinungsjahr
2011
Zeitschriftentitel
Ultramicroscopy
Band
111
Ausgabe
5
Seite(n)
342-349
ISSN
0304-3991
Page URI
https://pub.uni-bielefeld.de/record/1994705

Zitieren

Rhinow D, Büenfeld M, Weber N-E, et al. Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes. Ultramicroscopy. 2011;111(5):342-349.
Rhinow, D., Büenfeld, M., Weber, N. - E., Beyer, A., Gölzhäuser, A., Kühlbrandt, W., Hampp, N., et al. (2011). Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes. Ultramicroscopy, 111(5), 342-349. https://doi.org/10.1016/j.ultramic.2011.01.028
Rhinow, Daniel, Büenfeld, Matthias, Weber, Nils-Eike, Beyer, André, Gölzhäuser, Armin, Kühlbrandt, Werner, Hampp, Norbert, and Turchanin, Andrey. 2011. “Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes”. Ultramicroscopy 111 (5): 342-349.
Rhinow, D., Büenfeld, M., Weber, N. - E., Beyer, A., Gölzhäuser, A., Kühlbrandt, W., Hampp, N., and Turchanin, A. (2011). Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes. Ultramicroscopy 111, 342-349.
Rhinow, D., et al., 2011. Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes. Ultramicroscopy, 111(5), p 342-349.
D. Rhinow, et al., “Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes”, Ultramicroscopy, vol. 111, 2011, pp. 342-349.
Rhinow, D., Büenfeld, M., Weber, N.-E., Beyer, A., Gölzhäuser, A., Kühlbrandt, W., Hampp, N., Turchanin, A.: Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes. Ultramicroscopy. 111, 342-349 (2011).
Rhinow, Daniel, Büenfeld, Matthias, Weber, Nils-Eike, Beyer, André, Gölzhäuser, Armin, Kühlbrandt, Werner, Hampp, Norbert, and Turchanin, Andrey. “Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes”. Ultramicroscopy 111.5 (2011): 342-349.

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Towards an optimum design for thin film phase plates.
Rhinow D., Ultramicroscopy 160(), 2016
PMID: 26397752
Progress towards an optimal specimen support for electron cryomicroscopy.
Russo CJ, Passmore LA., Curr Opin Struct Biol 37(), 2016
PMID: 26774849
Carbon Nanomembranes.
Turchanin A, Gölzhäuser A., Adv Mater 28(29), 2016
PMID: 27281234
Self-assembled monolayers improve protein distribution on holey carbon cryo-EM supports.
Meyerson JR, Rao P, Kumar J, Chittori S, Banerjee S, Pierson J, Mayer ML, Subramaniam S., Sci Rep 4(), 2014
PMID: 25403871
Practical aspects of Boersch phase contrast electron microscopy of biological specimens.
Walter A, Muzik H, Vieker H, Turchanin A, Beyer A, Gölzhäuser A, Lacher M, Steltenkamp S, Schmitz S, Holik P, Kühlbrandt W, Rhinow D., Ultramicroscopy 116(), 2012
PMID: 22537744
Oxidative doping renders graphene hydrophilic, facilitating its use as a support in biological TEM.
Pantelic RS, Suk JW, Hao Y, Ruoff RS, Stahlberg H., Nano Lett 11(10), 2011
PMID: 21910506

38 References

Daten bereitgestellt von Europe PubMed Central.

The structure of ferritin cores determined by electron nanodiffraction.
Cowley JM, Janney DE, Gerkin RC, Buseck PR., J. Struct. Biol. 131(3), 2000
PMID: 11052893
The ferritins: molecular properties, iron storage function and cellular regulation.
Harrison PM, Arosio P., Biochim. Biophys. Acta 1275(3), 1996
PMID: 8695634
Cryo-electron tomography of bacteria: progress, challenges and future prospects.
Milne JL, Subramaniam S., Nat. Rev. Microbiol. 7(9), 2009
PMID: 19668224
Electron-induced crosslinking of aromatic self-assembled monolayers: Negative resists for nanolithography
Geyer, Applied Physics Letters 75(16), 1999
Ultrastructure of ferritin and apoferritin: A review
MASSOVER, Micron 24(4), 1993
Spectroscopic electron tomography.
Mobus G, Doole RC, Inkson BJ., Ultramicroscopy 96(3-4), 2003
PMID: 12871806
Synthesis of inorganic nanophase materials in supramolecular protein cages
Meldrum, Nature 349(6311), 1991
Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts.
Lawson DM, Artymiuk PJ, Yewdall SJ, Smith JM, Livingstone JC, Treffry A, Luzzago A, Levi S, Arosio P, Cesareni G., Nature 349(6309), 1991
PMID: 1992356
Zero-loss energy filtering under low-dose conditions using a post-column energy filter
GRIMM, Journal of Microscopy 183(1), 1996
Three-dimensional distributions of elements in biological samples by energy-filtered electron tomography.
Leapman RD, Kocsis E, Zhang G, Talbot TL, Laquerriere P., Ultramicroscopy 100(1-2), 2004
PMID: 15219696
UCSF Chimera--a visualization system for exploratory research and analysis.
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE., J Comput Chem 25(13), 2004
PMID: 15264254
Zero-loss energy filtering as improved imaging mode in cryoelectronmicroscopy of frozen-hydrated specimens*1
SCHRODER, Journal of Structural Biology 105(1-3), 1990
Structural studies by electron tomography: from cells to molecules.
Lucic V, Forster F, Baumeister W., Annu. Rev. Biochem. 74(), 2005
PMID: 15952904
Two-dimensional gas of massless Dirac fermions in graphene.
Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA., Nature 438(7065), 2005
PMID: 16281030
Four-dimensional spectral tomography of carbonaceous nanocomposites.
Gass MH, Koziol KK, Windle AH, Midgley PA., Nano Lett. 6(3), 2006
PMID: 16522026
The ultrastructure of ferritin macromolecules. The lattice structure of the core crystallites.
Massover WH, Cowley JM., Proc. Natl. Acad. Sci. U.S.A. 70(12), 1973
PMID: 4521210
High thermal stability of cross-linked aromatic self-assembled monolayers: Nanopatterning via selective thermal desorption
Turchanin, Applied Physics Letters 90(5), 2007
Mapping surface plasmons on a single metallic nanoparticle
Nelayah, Nature Physics 3(5), 2007
Biological Containers: Protein Cages as Multifunctional Nanoplatforms
Uchida, Advanced Materials 19(8), 2007
Three-dimensional elemental mapping of phosphorus by quantitative electron spectroscopic tomography (QuEST).
Aronova MA, Kim YC, Harmon R, Sousa AA, Zhang G, Leapman RD., J. Struct. Biol. 160(1), 2007
PMID: 17693097
Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction.
Zhang X, Settembre E, Xu C, Dormitzer PR, Bellamy R, Harrison SC, Grigorieff N., Proc. Natl. Acad. Sci. U.S.A. 105(6), 2008
PMID: 18238898
Novel carbon nanosheets as support for ultrahigh-resolution structural analysis of nanoparticles.
Nottbohm CT, Beyer A, Sologubenko AS, Ennen I, Hutten A, Rosner H, Eck W, Mayer J, Golzhauser A., Ultramicroscopy 108(9), 2008
PMID: 18406532
Imaging and dynamics of light atoms and molecules on graphene.
Meyer JC, Girit CO, Crommie MF, Zettl A., Nature 454(7202), 2008
PMID: 18633414
Quantitative EFTEM mapping of near physiological calcium concentrations in biological specimens.
Aronova MA, Kim YC, Pivovarova NB, Andrews SB, Leapman RD., Ultramicroscopy 109(3), 2008
PMID: 19118952
Electron energy-loss spectroscopy in the TEM
Egerton, Reports on Progress in Physics 72(1), 2009
One Nanometer Thin Carbon Nanosheets with Tunable Conductivity and Stiffness
Turchanin, Advanced Materials 21(12), 2009
Molecular mechanisms of electron-induced cross-linking in aromatic SAMs.
Turchanin A, Kafer D, El-Desawy M, Woll C, Witte G, Golzhauser A., Langmuir 25(13), 2009
PMID: 19485375
The advent of near-atomic resolution in single-particle electron microscopy.
Cheng Y, Walz T., Annu. Rev. Biochem. 78(), 2009
PMID: 19489732
Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy.
Wilson NR, Pandey PA, Beanland R, Young RJ, Kinloch IA, Gong L, Liu Z, Suenaga K, Rourke JP, York SJ, Sloan J., ACS Nano 3(9), 2009
PMID: 19689122
Direct e-beam writing of 1 nm thin carbon nanoribbons
Nottbohm, Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures 27(6), 2009
Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples.
Pantelic RS, Meyer JC, Kaiser U, Baumeister W, Plitzko JM., J. Struct. Biol. 170(1), 2009
PMID: 20035878
Comparison of EFTEM and STEM EELS plasmon imaging of gold nanoparticles in a monochromated TEM
Schaffer, Ultramicroscopy 110(8), 2010
Ultrathin conductive carbon nanomembranes as support films for structural analysis of biological specimens.
Rhinow D, Vonck J, Schranz M, Beyer A, Golzhauser A, Hampp N., Phys Chem Chem Phys 12(17), 2010
PMID: 20407705
Fabrication of metal patterns on freestanding graphenoid nanomembranes
Beyer, Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures 28(6), 2010
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 21329648
PubMed | Europe PMC

arXiv: 1110.1244

Suchen in

Google Scholar