Divergence based classification in Learning Vector Quantization
Mwebaze E, Schneider P, Schleif F-M, Aduwo JR, Quinn JA, Haase S, Villmann T, Biehl M (2011)
Neurocomputing 74(9): 1429-1435.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Mwebaze, E.;
Schneider, P.;
Schleif, Frank-MichaelUniBi ;
Aduwo, J.R.;
Quinn, J.A.;
Haase, S.;
Villmann, T.;
Biehl, M.
Einrichtung
Abstract / Bemerkung
We discuss the use of divergences in dissimilarity-based classification. Divergences can be employed whenever vectorial data consists of non-negative, potentially normalized features. This is, for instance, the case in spectral data or histograms. In particular, we introduce and study divergence based learning vector quantization (DLVQ). We derive cost function based DLVQ schemes for the family of gamma-divergences which includes the well-known Kullback-Leibler divergence and the so-called Cauchy-Schwarz divergence as special cases. The corresponding training schemes are applied to two different real world data sets. The first one, a benchmark data set (Wisconsin Breast Cancer) is available in the public domain. In the second problem, color histograms of leaf images are used to detect the presence of cassava mosaic disease in cassava plants. We compare the use of standard Euclidean distances with DLVQ for different parameter settings. We show that DLVQ can yield superior classification accuracies and Receiver Operating Characteristics
Erscheinungsjahr
2011
Zeitschriftentitel
Neurocomputing
Band
74
Ausgabe
9
Seite(n)
1429-1435
ISSN
0925-2312
Page URI
https://pub.uni-bielefeld.de/record/1992489
Zitieren
Mwebaze E, Schneider P, Schleif F-M, et al. Divergence based classification in Learning Vector Quantization. Neurocomputing. 2011;74(9):1429-1435.
Mwebaze, E., Schneider, P., Schleif, F. - M., Aduwo, J. R., Quinn, J. A., Haase, S., Villmann, T., et al. (2011). Divergence based classification in Learning Vector Quantization. Neurocomputing, 74(9), 1429-1435. https://doi.org/10.1016/j.neucom.2010.10.016
Mwebaze, E., Schneider, P., Schleif, Frank-Michael, Aduwo, J.R., Quinn, J.A., Haase, S., Villmann, T., and Biehl, M. 2011. “Divergence based classification in Learning Vector Quantization”. Neurocomputing 74 (9): 1429-1435.
Mwebaze, E., Schneider, P., Schleif, F. - M., Aduwo, J. R., Quinn, J. A., Haase, S., Villmann, T., and Biehl, M. (2011). Divergence based classification in Learning Vector Quantization. Neurocomputing 74, 1429-1435.
Mwebaze, E., et al., 2011. Divergence based classification in Learning Vector Quantization. Neurocomputing, 74(9), p 1429-1435.
E. Mwebaze, et al., “Divergence based classification in Learning Vector Quantization”, Neurocomputing, vol. 74, 2011, pp. 1429-1435.
Mwebaze, E., Schneider, P., Schleif, F.-M., Aduwo, J.R., Quinn, J.A., Haase, S., Villmann, T., Biehl, M.: Divergence based classification in Learning Vector Quantization. Neurocomputing. 74, 1429-1435 (2011).
Mwebaze, E., Schneider, P., Schleif, Frank-Michael, Aduwo, J.R., Quinn, J.A., Haase, S., Villmann, T., and Biehl, M. “Divergence based classification in Learning Vector Quantization”. Neurocomputing 74.9 (2011): 1429-1435.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in