[{"status":"public","date_updated":"2018-07-24T12:59:52Z","type":"journal_article","year":"1998","_id":"1978506","publication":"Nucl.Phys. B","title":"Microscopic Spectra of Dirac Operators and Finite-Volume Partition Functions","external_id":{"arxiv":["hep-th/9801133"],"isi":["000076018100022"]},"extern":"1","issue":"1-2","doi":"10.1016/S0550-3213(98)00338-1","date_submitted":"2011-01-27T15:12:01Z","date_created":"2011-01-27T13:28:57Z","citation":{"default":"Akemann G, Damgaard PH (1998)

*Nucl.Phys. B* 528(1-2): 411-431.","angewandte-chemie":"G. Akemann, and P. H. Damgaard, “Microscopic Spectra of Dirac Operators and Finite-Volume Partition Functions”, *Nucl.Phys. B*, **1998**, *528*, 411-431.","bio1":"Akemann G, Damgaard PH (1998)

Microscopic Spectra of Dirac Operators and Finite-Volume Partition Functions.

Nucl.Phys. B 528(1-2): 411-431.","aps":" G. Akemann and P. H. Damgaard, Microscopic Spectra of Dirac Operators and Finite-Volume Partition Functions, Nucl.Phys. B **528**, 411 (1998).","ama":"Akemann G, Damgaard PH. Microscopic Spectra of Dirac Operators and Finite-Volume Partition Functions. *Nucl.Phys. B*. 1998;528(1-2):411-431.","harvard1":"Akemann, G., & Damgaard, P.H., 1998. Microscopic Spectra of Dirac Operators and Finite-Volume Partition Functions. *Nucl.Phys. B*, 528(1-2), p 411-431.","apa_indent":"Akemann, G., & Damgaard, P. H. (1998). Microscopic Spectra of Dirac Operators and Finite-Volume Partition Functions. *Nucl.Phys. B*, *528*(1-2), 411-431. doi:10.1016/S0550-3213(98)00338-1

","chicago":"Akemann, Gernot, and Damgaard, P. H. 1998. “Microscopic Spectra of Dirac Operators and Finite-Volume Partition Functions”. *Nucl.Phys. B* 528 (1-2): 411-431.

","mla":"Akemann, Gernot, and Damgaard, P. H. “Microscopic Spectra of Dirac Operators and Finite-Volume Partition Functions”. *Nucl.Phys. B* 528.1-2 (1998): 411-431.","ieee":" G. Akemann and P.H. Damgaard, “Microscopic Spectra of Dirac Operators and Finite-Volume Partition Functions”, *Nucl.Phys. B*, vol. 528, 1998, pp. 411-431.","wels":"Akemann, G.; Damgaard, P. H. (1998): Microscopic Spectra of Dirac Operators and Finite-Volume Partition Functions *Nucl.Phys. B*,528:(1-2): 411-431.","dgps":"Akemann, G. & Damgaard, P.H. (1998). Microscopic Spectra of Dirac Operators and Finite-Volume Partition Functions. *Nucl.Phys. B*, *528*(1-2), 411-431. doi:10.1016/S0550-3213(98)00338-1.

","lncs":" Akemann, G., Damgaard, P.H.: Microscopic Spectra of Dirac Operators and Finite-Volume Partition Functions. Nucl.Phys. B. 528, 411-431 (1998).","apa":"Akemann, G., & Damgaard, P. H. (1998). Microscopic Spectra of Dirac Operators and Finite-Volume Partition Functions. *Nucl.Phys. B*, *528*(1-2), 411-431. doi:10.1016/S0550-3213(98)00338-1","frontiers":"Akemann, G., and Damgaard, P. H. (1998). Microscopic Spectra of Dirac Operators and Finite-Volume Partition Functions. *Nucl.Phys. B* 528, 411-431."},"first_author":"Akemann, Gernot","language":[{"iso":"eng"}],"id":"1978506","old_type":"journalarticle","page":"411-431","arxiv":"1","publication_identifier":{"issn":["0550-3213"]},"author":[{"full_name":"Akemann, Gernot","id":"23134650","last_name":"Akemann","autoren_ansetzung":["Akemann, Gernot","Akemann","Gernot Akemann","Akemann, G","Akemann, G.","G Akemann","G. Akemann"],"first_name":"Gernot"},{"first_name":"P. H.","autoren_ansetzung":["Damgaard, P. H.","Damgaard","P. H. Damgaard","Damgaard, P","Damgaard, P.","P Damgaard","P. Damgaard","Damgaard P.H.","Damgaard, P.H.","Damgaard P. H.","Damgaard, P. H.","Damgaard P..H.","Damgaard, P..H.","Damgaard P.. H.","Damgaard, P.. H."],"last_name":"Damgaard","full_name":"Damgaard, P. H."}],"publication_status":"published","volume":"528","accept":"1","abstract":[{"text":"Exact results from random matrix theory are used to systematically analysethe relationship between microscopic Dirac spectra and finite-volume partitionfunctions. Results are presented for the unitary ensemble, and the chiralanalogs of the three classical matrix ensembles: unitary, orthogonal andsymplectic, all of which describe universality classes of $SU(N_c)$ gaugetheories with $N_f$ fermions in different representations. Random matrix theoryuniversality is reconsidered in this new light.","lang":"eng"}],"intvolume":" 528","isi":"1","department":[{"_id":"29104678"}]}]