[{"_id":"1968622","year":"2006","isi":"1","date_submitted":"2011-01-19T17:30:41Z","author":[{"last_name":"Ejiri","autoren_ansetzung":["Ejiri, S.","Ejiri","S. Ejiri","Ejiri, S","Ejiri, S.","S Ejiri","S. Ejiri"],"full_name":"Ejiri, S.","first_name":"S."},{"autoren_ansetzung":["Allton, C. R.","Allton","C. R. Allton","Allton, C","Allton, C.","C Allton","C. Allton","Allton C.R.","Allton, C.R.","Allton C. R.","Allton, C. R.","Allton C..R.","Allton, C..R.","Allton C.. R.","Allton, C.. R."],"last_name":"Allton","first_name":"C. R.","full_name":"Allton, C. R."},{"first_name":"Matthias","full_name":"Doring, Matthias","autoren_ansetzung":["Doring, Matthias","Doring","Matthias Doring","Doring, M","Doring, M.","M Doring","M. Doring"],"last_name":"Doring"},{"last_name":"Hands","autoren_ansetzung":["Hands, S. J","Hands","S. J Hands","Hands, S","Hands, S.","S Hands","S. Hands","Hands S.J","Hands, S.J","Hands S. J","Hands, S. J","Hands S..J","Hands, S..J","Hands S.. J","Hands, S.. J"],"full_name":"Hands, S. J","first_name":"S. J"},{"last_name":"Kaczmarek","autoren_ansetzung":["Kaczmarek, Olaf","Kaczmarek","Olaf Kaczmarek","Kaczmarek, O","Kaczmarek, O.","O Kaczmarek","O. Kaczmarek"],"full_name":"Kaczmarek, Olaf","id":"33776","first_name":"Olaf"},{"last_name":"Karsch","autoren_ansetzung":["Karsch, Frithjof","Karsch","Frithjof Karsch","Karsch, F","Karsch, F.","F Karsch","F. Karsch"],"id":"40326","full_name":"Karsch, Frithjof","first_name":"Frithjof"},{"full_name":"Laermann, Edwin","id":"40621","first_name":"Edwin","last_name":"Laermann","autoren_ansetzung":["Laermann, Edwin","Laermann","Edwin Laermann","Laermann, E","Laermann, E.","E Laermann","E. Laermann"]},{"last_name":"Redlich","autoren_ansetzung":["Redlich, K.","Redlich","K. Redlich","Redlich, K","Redlich, K.","K Redlich","K. Redlich"],"full_name":"Redlich, K.","first_name":"K."}],"date_created":"2011-01-19T16:18:26Z","id":"1968622","keyword":["Phenomenology-HEP"],"first_author":"Ejiri, S.","type":"journal_article","publication_identifier":{"issn":["0375-9474"]},"title":"The QCD equation of state for two flavors at non-zero chemical potential","intvolume":" 774","publication":"Nucl.Phys. A","citation":{"harvard1":"Ejiri, S., et al., 2006. The QCD equation of state for two flavors at non-zero chemical potential. *Nucl.Phys. A*, 774, p 837-840.","ama":"Ejiri S, Allton CR, Doring M, et al. The QCD equation of state for two flavors at non-zero chemical potential. *Nucl.Phys. A*. 2006;774:837-840.","aps":" S. Ejiri, et al., The QCD equation of state for two flavors at non-zero chemical potential, Nucl.Phys. A **774**, 837 (2006).","dgps":"Ejiri, S., Allton, C.R., Doring, M., Hands, S.J., Kaczmarek, O., Karsch, F., Laermann, E. & Redlich, K. (2006). The QCD equation of state for two flavors at non-zero chemical potential. *Nucl.Phys. A*, *774*, 837-840. doi:10.1016/j.nuclphysa.2006.06.023.

","apa_indent":"Ejiri, S., Allton, C. R., Doring, M., Hands, S. J., Kaczmarek, O., Karsch, F., Laermann, E., et al. (2006). The QCD equation of state for two flavors at non-zero chemical potential. *Nucl.Phys. A*, *774*, 837-840. doi:10.1016/j.nuclphysa.2006.06.023

","chicago":"Ejiri, S., Allton, C. R., Doring, Matthias, Hands, S. J, Kaczmarek, Olaf, Karsch, Frithjof, Laermann, Edwin, and Redlich, K. 2006. “The QCD equation of state for two flavors at non-zero chemical potential”. *Nucl.Phys. A* 774: 837-840.

","apa":"Ejiri, S., Allton, C. R., Doring, M., Hands, S. J., Kaczmarek, O., Karsch, F., Laermann, E., et al. (2006). The QCD equation of state for two flavors at non-zero chemical potential. *Nucl.Phys. A*, *774*, 837-840. doi:10.1016/j.nuclphysa.2006.06.023","frontiers":"Ejiri, S., Allton, C. R., Doring, M., Hands, S. J., Kaczmarek, O., Karsch, F., Laermann, E., and Redlich, K. (2006). The QCD equation of state for two flavors at non-zero chemical potential. *Nucl.Phys. A* 774, 837-840.","angewandte-chemie":"S. Ejiri, C. R. Allton, M. Doring, S. J. Hands, O. Kaczmarek, F. Karsch, E. Laermann, and K. Redlich, “The QCD equation of state for two flavors at non-zero chemical potential”, *Nucl.Phys. A*, **2006**, *774*, 837-840.","mla":"Ejiri, S., Allton, C. R., Doring, Matthias, Hands, S. J, Kaczmarek, Olaf, Karsch, Frithjof, Laermann, Edwin, and Redlich, K. “The QCD equation of state for two flavors at non-zero chemical potential”. *Nucl.Phys. A* 774 (2006): 837-840.","ieee":" S. Ejiri, et al., “The QCD equation of state for two flavors at non-zero chemical potential”, *Nucl.Phys. A*, vol. 774, 2006, pp. 837-840.","wels":"Ejiri, S.; Allton, C. R.; Doring, M.; Hands, S. J.; Kaczmarek, O.; Karsch, F.; Laermann, E.; Redlich, K. (2006): The QCD equation of state for two flavors at non-zero chemical potential *Nucl.Phys. A*,774: 837-840.","lncs":" Ejiri, S., Allton, C.R., Doring, M., Hands, S.J., Kaczmarek, O., Karsch, F., Laermann, E., Redlich, K.: The QCD equation of state for two flavors at non-zero chemical potential. Nucl.Phys. A. 774, 837-840 (2006).","bio1":"Ejiri S, Allton CR, Doring M, Hands SJ, Kaczmarek O, Karsch F, Laermann E, Redlich K (2006)

The QCD equation of state for two flavors at non-zero chemical potential.

Nucl.Phys. A 774: 837-840.","default":"Ejiri S, Allton CR, Doring M, Hands SJ, Kaczmarek O, Karsch F, Laermann E, Redlich K (2006)

*Nucl.Phys. A* 774: 837-840."},"doi":"10.1016/j.nuclphysa.2006.06.023","accept":"1","status":"public","page":"837-840","volume":"774","publication_status":"published","article_type":"original","inspire":"1","date_updated":"2018-07-24T13:00:09Z","department":[{"_id":"10028"},{"_id":"23470456"}],"language":[{"iso":"eng"}],"arxiv":"1","arxivID":"hep-ph/0509361","abstract":[{"lang":"eng","text":"We present results of a simulation of 2 flavour QCD on a $16^3\\times4$ lattice using p4-improved staggered fermions with bare quark mass $m/T=0.4$. Derivatives of the thermodynamic grand canonical partition function $Z(V,T,\\mu_u,\\mu_d)$ with respect to chemical potentials $\\mu_{u,d}$ for different quark flavours are calculated up to sixth order, enabling estimates of the pressure and the quark number density as well as the chiral condensate and various susceptibilities as functions of $\\mu_{u,d}$ via Taylor series expansion. Results are compared to high temperature perturbation theory as well as a hadron resonance gas model. We also analyze baryon as well as isospin fluctuations and discuss the relation to the chiral critical point in the QCD phase diagram. We moreover discuss the dependence of the heavy quark free energy on the chemical potential."}],"external_id":{"arxiv":["hep-ph/0509361"],"isi":["000240816000136"],"inspire":["693756"]}}]