Chasing Behavior and Optomotor Following in Free-Flying Male Blowflies: Flight Performance and Interactions of the Underlying Control Systems

Trischler C, Kern R, Egelhaaf M (2010)
Frontiers in Behavioral Neuroscience 4: 1-13.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor/in
; ;
Erscheinungsjahr
Zeitschriftentitel
Frontiers in Behavioral Neuroscience
Band
4
Seite(n)
1-13
ISSN
eISSN
PUB-ID

Zitieren

Trischler C, Kern R, Egelhaaf M. Chasing Behavior and Optomotor Following in Free-Flying Male Blowflies: Flight Performance and Interactions of the Underlying Control Systems. Frontiers in Behavioral Neuroscience. 2010;4:1-13.
Trischler, C., Kern, R., & Egelhaaf, M. (2010). Chasing Behavior and Optomotor Following in Free-Flying Male Blowflies: Flight Performance and Interactions of the Underlying Control Systems. Frontiers in Behavioral Neuroscience, 4, 1-13. doi:10.3389/fnbeh.2010.00020
Trischler, C., Kern, R., and Egelhaaf, M. (2010). Chasing Behavior and Optomotor Following in Free-Flying Male Blowflies: Flight Performance and Interactions of the Underlying Control Systems. Frontiers in Behavioral Neuroscience 4, 1-13.
Trischler, C., Kern, R., & Egelhaaf, M., 2010. Chasing Behavior and Optomotor Following in Free-Flying Male Blowflies: Flight Performance and Interactions of the Underlying Control Systems. Frontiers in Behavioral Neuroscience, 4, p 1-13.
C. Trischler, R. Kern, and M. Egelhaaf, “Chasing Behavior and Optomotor Following in Free-Flying Male Blowflies: Flight Performance and Interactions of the Underlying Control Systems”, Frontiers in Behavioral Neuroscience, vol. 4, 2010, pp. 1-13.
Trischler, C., Kern, R., Egelhaaf, M.: Chasing Behavior and Optomotor Following in Free-Flying Male Blowflies: Flight Performance and Interactions of the Underlying Control Systems. Frontiers in Behavioral Neuroscience. 4, 1-13 (2010).
Trischler, Christine, Kern, Roland, and Egelhaaf, Martin. “Chasing Behavior and Optomotor Following in Free-Flying Male Blowflies: Flight Performance and Interactions of the Underlying Control Systems”. Frontiers in Behavioral Neuroscience 4 (2010): 1-13.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:57:13Z

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Role of the light source position in freely falling hoverflies' stabilization performances.
Goulard R, Verbe A, Vercher JL, Viollet S., Biol Lett 14(5), 2018
PMID: 29794004
Integration of Small- and Wide-Field Visual Features in Target-Selective Descending Neurons of both Predatory and Nonpredatory Dipterans.
Nicholas S, Supple J, Leibbrandt R, Gonzalez-Bellido PT, Nordström K., J Neurosci 38(50), 2018
PMID: 30373766
When hawks attack: animal-borne video studies of goshawk pursuit and prey-evasion strategies.
Kane SA, Fulton AH, Rosenthal LJ., J Exp Biol 218(pt 2), 2015
PMID: 25609783
Neural specializations for small target detection in insects.
Nordström K., Curr Opin Neurobiol 22(2), 2012
PMID: 22244741
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913

93 References

Daten bereitgestellt von Europe PubMed Central.

Retinotopic organization of small-field-target-detecting neurons in the insect visual system.
Barnett PD, Nordstrom K, O'carroll DC., Curr. Biol. 17(7), 2007
PMID: 17363248
Steering a virtual blowfly: simulation of visual pursuit.
Boeddeker N, Egelhaaf M., Proc. Biol. Sci. 270(1527), 2003
PMID: 14561312
A single control system for smooth and saccade-like pursuit in blowflies.
Boeddeker N, Egelhaaf M., J. Exp. Biol. 208(Pt 8), 2005
PMID: 15802679
Chasing a dummy target: smooth pursuit and velocity control in male blowflies.
Boeddeker N, Kern R, Egelhaaf M., Proc. Biol. Sci. 270(1513), 2003
PMID: 12639319
Visual and acoustic course control in the cricket Gryllus bimaculatus
Böhm H., Schildberger K., Huber F.., 1991
Comparison between the movement detection systems underlying the optomotor and the landing response in the housefly
Borst A., Bahde S.., 1987
Angular tracking and the optomotor response. An analysis of visual reflex interaction in a hoverfly
Collett T.., 1980
Visual control of flight behaviour in the hoverfly Syritta pipiens L
Collett T., Land M.., 1975
Visual stabilization in arthropods.
Collett T, Nalbach HO, Wagner H., Rev Oculomot Res 5(), 1993
PMID: 8420551
Human smooth and saccadic eye-movements during voluntary pursuit of different target motions on different backgrounds
Collewijn H., Tamminga E.., 1984
Corollary discharge across the animal kingdom.
Crapse TB, Sommer MA., Nat. Rev. Neurosci. 9(8), 2008
PMID: 18641666
Role of retinal slip in the prediction of target motion during smooth and saccadic pursuit.
de Brouwer S, Missal M, Lefevre P., J. Neurophysiol. 86(2), 2001
PMID: 11495930
What triggers catch-up saccades during visual tracking?
de Brouwer S, Yuksel D, Blohm G, Missal M, Lefevre P., J. Neurophysiol. 87(3), 2002
PMID: 11877535
Dynamic properties of large-field and small-field optomotor flight responses in Drosophila.
Duistermars BJ, Reiser MB, Zhu Y, Frye MA., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 193(7), 2007
PMID: 17551735
Dynamic properties of two control systems underlying visually guided turning in house-flies
Egelhaaf M.., 1987
Insect motion vision
Egelhaaf M.., 2009
Visual course control in flies relies on neuronal computation of object and background motion.
Egelhaaf M, Hausen K, Reichardt W, Wehrhahn C., Trends Neurosci. 11(8), 1988
PMID: 2469195
Visual receptive-field properties of feature detecting neurons in the dragonfly
Frye M., Olberg R.., 1995
Linked target selection for saccadic and smooth pursuit eye movements.
Gardner JL, Lisberger SG., J. Neurosci. 21(6), 2001
PMID: 11245691
The functional organization of male-specific visual neurons in flies.
Gilbert C, Strausfeld NJ., J. Comp. Physiol. A 169(4), 1991
PMID: 1723431
Straight forward to the queen: pursuing honeybee drones (Apis mellifera L) adjust their body axis to the direction of the queen
Gries M., Koeniger N.., 1996
Functional organization of the fly retina
Hardie R.., 1985
Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals
Hausen K.., 1982
Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics
Hausen K.., 1982
Neural mechanisms of visual course control in insects
Hausen K., Egelhaaf M.., 1989
Sexually dimorphic interneuron arrangements in the fly visual system
Hausen K., Strausfeld N.., 1980

Heisenberg M., Wolf R.., 1984
Multisensory control in insect oculomotor systems.
Hengstenberg R., Rev Oculomot Res 5(), 1993
PMID: 8420553
Slow eye movements.
Ilg UJ., Prog. Neurobiol. 53(3), 1997
PMID: 9364615
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J. Neurophysiol. 96(3), 2006
PMID: 16687623
Optomotor course control in flies with largely asymmetric visual input.
Kern R, Egelhaaf M., J. Comp. Physiol. A 186(1), 2000
PMID: 10659042
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol. 3(6), 2005
PMID: 15884977
Object detection by relative motion in freely flying flies
Kimmerle B., Srinivasan M., Egelhaaf M.., 1996
Object detection in the fly during simulated translatory flight
Kimmerle B., Warzecha A.-K., Egelhaaf M.., 1997
Effect of stationary textured backgrounds on the initiation of smooth pursuit eye-movements in monkey
Kimmig H., Miles F., Schwarz U.., 1992
Recasting the smooth pursuit eye movement system.
Krauzlis RJ., J. Neurophysiol. 91(2), 2004
PMID: 14762145
Chasing and pursuit in the dolichopodid fly Poecilobothrus nobilitatus
Land M.., 1993
The visual control of courtship in the fly Poecilobothrus nobilitatus
Land M.., 1993
Motion and vision: why animals move their eyes.
Land MF., J. Comp. Physiol. A 185(4), 1999
PMID: 10555268
Chasing behaviour of houseflies (Fannia canicularis). A description and analysis
Land M., Collett T.., 1974
A survey of active vision in invertebrates
Land M., Collett T.., 1997
Maps of the acute zones of fly eyes
Land M., Eckert H.., 1985
From eye movements to actions: how batsmen hit the ball.
Land MF, McLeod P., Nat. Neurosci. 3(12), 2000
PMID: 11100157

Lindemann J.., 2006
On the computations analyzing natural optic flow: quantitative model analysis of the blowfly motion vision pathway.
Lindemann JP, Kern R, van Hateren JH, Ritter H, Egelhaaf M., J. Neurosci. 25(27), 2005
PMID: 16000634
Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly.
Lindemann JP, Weiss H, Moller R, Egelhaaf M., Biol Cybern 98(3), 2008
PMID: 18180948
How baseball outfielders determine where to run to catch fly balls.
McBeath MK, Shaffer DM, Kaiser MK., Science 268(5210), 1995
PMID: 7725104
Visual stabilization of the eyes in primates.
Miles FA., Curr. Opin. Neurobiol. 7(6), 1997
PMID: 9464972

Miles F., Wallman J.., 1993
The free-flight response of Drosophila to motion of the visual environment.
Mronz M, Lehmann FO., J. Exp. Biol. 211(Pt 13), 2008
PMID: 18552291
Insect detection of small targets moving in visual clutter.
Nordstrom K, Barnett PD, O'Carroll DC., PLoS Biol. 4(3), 2006
PMID: 16448249
Small object detection neurons in female hoverflies.
Nordstrom K, O'Carroll DC., Proc. Biol. Sci. 273(1591), 2006
PMID: 16720393
Feature- detecting neurons in dragonflies
O'Carroll D.., 1993
Object- and self-movement detectors in the ventral nerve cord of the dragonfly
Olberg R.., 1981
Prey size selection and distance estimation in foraging adult dragonflies.
Olberg RM, Worthington AH, Fox JL, Bessette CE, Loosemore MP., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 191(9), 2005
PMID: 16034603
Prey pursuit and interception in dragonflies.
Olberg RM, Worthington AH, Venator KR., J. Comp. Physiol. A 186(2), 2000
PMID: 10707313
Saccades and pursuit: two outcomes of a single sensorimotor process.
Orban de Xivry JJ, Lefevre P., J. Physiol. (Lond.) 584(Pt 1), 2007
PMID: 17690138
Figure-ground discrimination by relative movement in the visual system of the fly. Part II: Towards the neural circuitry
Reichardt W., Poggio T., Hausen K.., 1983
Foveal fixation and tracking in praying mantis
Rossel S.., 1980
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Gaze stabilization by optokinetic reflex (OKR) and vestibulo-ocular reflex (VOR) during active head rotation in man.
Schweigart G, Mergner T, Evdokimidis I, Morand S, Becker W., Vision Res. 37(12), 1997
PMID: 9231230
Baseball outfielders maintain a linear optical trajectory when tracking uncatchable fly balls.
Shaffer DM, McBeath MK., J Exp Psychol Hum Percept Perform 28(2), 2002
PMID: 11999858
Contrast and assimilation in motion perception and smooth pursuit eye movements.
Spering M, Gegenfurtner KR., J. Neurophysiol. 98(3), 2007
PMID: 17634337
Range perception through apparent image speed in freely flying honeybees.
Srinivasan MV, Lehrer M, Kirchner WH, Zhang SW., Vis. Neurosci. 6(5), 1991
PMID: 2069903
The effect of visual input on calling song attractiveness for female Acheta domesticus
Stout J., Atkins G., Weber T., Huber F.., 1987
Gaze stabilizing head movements compensate for walk-induced body oscillations in the fly Drosophila melanogaster
Strauss R., Heisenberg M.., 1990
Characterisation of a blowfly male-specific neuron using behaviourally generated visual stimuli.
Trischler C, Boeddeker N, Egelhaaf M., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 193(5), 2007
PMID: 17333206
Blowfly flight and optic flow. II. Head movements during flight
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
Detection and tracking of moving objects by the fly Musca domestica
Virsik R., Reichardt W.., 1976
Das Reafferenzprinzip (Wechselwirkungen zwischen Zentralnervensystem und Peripherie)
von E., Mittelstaedt H.., 1950
Functional characterization of the male lobula giant neuron 1 (MLG1) in the blowfly, Calliphora erythrocephala (Meig.)
Wachenfeld A., Hausen K.., 1993
The role of male-specific visual interneurons in the mating behavior of the blowfly, Calliphora erythrocephala (Meig.),
Wachenfeld A., Hausen K.., 1994
Flight performance and visual control of flight of the free-flying housefly (Musca domestica). I. Organization of the flight motor
Wagner H.., 1986
Flight performance and visual control of flight of the free-flying housefly (Musca domestica). II. Pursuit of targets
Wagner H.., 1986
Flight performance and visual control of flight of the free-flying housefly (Musca domestica). III. Interactions between angular movement induced by wide- and smallfield stimuli
Wagner H.., 1986
Intrinsic properties of biological motion detectors prevent the optomotor control system from getting unstable
Warzecha A.-K., Egelhaaf M.., 1996
Sensorimotor control of navigation in arthropod and artificial systems.
Webb B, Harrison RR, Willis MA., Arthropod structure & development. 33(3), 2004
PMID: IND43653727
Female Acheta domesticus track acoustical and visual targets with different walking modes
Weber T., Atkins G., Stout J., Huber F.., 1987
Spatial vision in arthropods
Wehner R.., 1981
Sexual dimorphism in the visual system of flies: the free flight behaviour of male Bibionidae (Diptera)
Zeil J.., 1983

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 20514339
PubMed | Europe PMC

Suchen in

Google Scholar