Coding of Stimuli by Ampullary Afferents in Gnathonemus petersii

Engelmann J, Gertz S, Goulet J, Schuh A, von der Emde G (2010)
Journal of Neurophysiology 104(4): 1955-1968.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Engelmann, JacobUniBi ; Gertz, S.; Goulet, J.; Schuh, A.; von der Emde, G.
Abstract / Bemerkung
Weakly electric fish use electroreception for both active and passive electrolocation and for electrocommunication. While both active and passive electrolocation systems are prominent in weakly electric Mormyriform fishes, knowledge of their passive electrolocation ability is still scarce. To better estimate the contribution of passive electric sensing to the orientation toward electric stimuli in weakly electric fishes, we investigated frequency tuning applying classical input-output characterization and stimulus reconstruction methods to reveal the encoding capabilities of ampullary receptor afferents. Ampullary receptor afferents were most sensitive (threshold: 40 muV/cm) at low frequencies (<10 Hz) and appear to be tuned to a mix of amplitude and slope of the input signals. The low-frequency tuning was corroborated by behavioral experiments, but behavioral thresholds were one order of magnitude higher. The integration of simultaneously recorded afferents of similar frequency-tuning resulted in strongly enhanced signal-to-noise ratios and increased mutual information rates but did not increase the range of frequencies detectable by the system. Theoretically the neuronal integration of input from receptors experiencing opposite polarities of a stimulus (left and right side of the fish) was shown to enhance encoding of such stimuli, including an increase of bandwidth. Covariance and coherence analysis showed that spiking of ampullary afferents is sufficiently explained by the spike-triggered average, i.e., receptors respond to a single linear feature of the stimulus. Our data support the notion of a division of labor of the active and passive electrosensory systems in weakly electric fishes based on frequency tuning. Future experiments will address the role of central convergence of ampullary input that we expect to lead to higher sensitivity and encoding power of the system.
Erscheinungsjahr
2010
Zeitschriftentitel
Journal of Neurophysiology
Band
104
Ausgabe
4
Seite(n)
1955-1968
ISSN
0022-3077
eISSN
1522-1598
Page URI
https://pub.uni-bielefeld.de/record/1929790

Zitieren

Engelmann J, Gertz S, Goulet J, Schuh A, von der Emde G. Coding of Stimuli by Ampullary Afferents in Gnathonemus petersii. Journal of Neurophysiology. 2010;104(4):1955-1968.
Engelmann, J., Gertz, S., Goulet, J., Schuh, A., & von der Emde, G. (2010). Coding of Stimuli by Ampullary Afferents in Gnathonemus petersii. Journal of Neurophysiology, 104(4), 1955-1968. https://doi.org/10.1152/jn.00503.2009
Engelmann, Jacob, Gertz, S., Goulet, J., Schuh, A., and von der Emde, G. 2010. “Coding of Stimuli by Ampullary Afferents in Gnathonemus petersii”. Journal of Neurophysiology 104 (4): 1955-1968.
Engelmann, J., Gertz, S., Goulet, J., Schuh, A., and von der Emde, G. (2010). Coding of Stimuli by Ampullary Afferents in Gnathonemus petersii. Journal of Neurophysiology 104, 1955-1968.
Engelmann, J., et al., 2010. Coding of Stimuli by Ampullary Afferents in Gnathonemus petersii. Journal of Neurophysiology, 104(4), p 1955-1968.
J. Engelmann, et al., “Coding of Stimuli by Ampullary Afferents in Gnathonemus petersii”, Journal of Neurophysiology, vol. 104, 2010, pp. 1955-1968.
Engelmann, J., Gertz, S., Goulet, J., Schuh, A., von der Emde, G.: Coding of Stimuli by Ampullary Afferents in Gnathonemus petersii. Journal of Neurophysiology. 104, 1955-1968 (2010).
Engelmann, Jacob, Gertz, S., Goulet, J., Schuh, A., and von der Emde, G. “Coding of Stimuli by Ampullary Afferents in Gnathonemus petersii”. Journal of Neurophysiology 104.4 (2010): 1955-1968.

10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Generalization of learned responses in the mormyrid electrosensory lobe.
Dempsey C, Abbott LF, Sawtell NB., Elife 8(), 2019
PMID: 30860480
Synchronous spikes are necessary but not sufficient for a synchrony code in populations of spiking neurons.
Grewe J, Kruscha A, Lindner B, Benda J., Proc Natl Acad Sci U S A 114(10), 2017
PMID: 28202729
Adaptive responses of peripheral lateral line nerve fibres to sinusoidal wave stimuli.
Mogdans J, Müller C, Frings M, Raap F., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 203(5), 2017
PMID: 28405761
Temporal Code-Driven Stimulation: Definition and Application to Electric Fish Signaling.
Lareo A, Forlim CG, Pinto RD, Varona P, Rodriguez FB., Front Neuroinform 10(), 2016
PMID: 27766078
Temporal precision and reliability in the velocity regime of a hair-cell sensory system: the mechanosensory lateral line of goldfish, Carassius auratus.
Goulet J, van Hemmen JL, Jung SN, Chagnaud BP, Scholze B, Engelmann J., J Neurophysiol 107(10), 2012
PMID: 22378175
Identifying temporal codes in spontaneously active sensory neurons.
Neiman AB, Russell DF, Rowe MH., PLoS One 6(11), 2011
PMID: 22087303
Sensory coding in oscillatory electroreceptors of paddlefish.
Neiman AB, Russell DF., Chaos 21(4), 2011
PMID: 22225379

63 References

Daten bereitgestellt von Europe PubMed Central.

Functional foveae in an electrosensory system.
Bacelo J, Engelmann J, Hollmann M, von der Emde G, Grant K., J. Comp. Neurol. 511(3), 2008
PMID: 18803238

Batschelet, 1981
Properties of a modifiable efference copy in an electric fish.
Bell CC., J. Neurophysiol. 47(6), 1982
PMID: 7108570

Bell, J Comp Physiol [A] 110(), 1976
Central connections of the posterior lateral line lobe in mormyrid fish.
Bell CC, Finger TE, Russell CJ., Exp Brain Res 42(1), 1981
PMID: 6163655

Bell, J Neuroscience 9(), 1989
Electrolocation in fish.
Bennett MV., Ann. N. Y. Acad. Sci. 188(), 1971
PMID: 4331616
Reading a neural code.
Bialek W, Rieke F, de Ruyter van Steveninck RR, Warland D., Science 252(5014), 1991
PMID: 2063199
Adaptive rescaling maximizes information transmission.
Brenner N, Bialek W, de Ruyter van Steveninck R., Neuron 26(3), 2000
PMID: 10896164

AUTHOR UNKNOWN, 0
Identification of synaptic interactions.
Brillinger DR, Bryant HL Jr, Segundo JP., Biol Cybern 22(4), 1976
PMID: 953079
Peripheral electrosensory imaging by weakly electric fish.
Caputi AA, Budelli R., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(6), 2006
PMID: 16501980
Nonlinear information processing in a model sensory system.
Chacron MJ., J. Neurophysiol. 95(5), 2006
PMID: 16495358

Dayan, 2001

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Selectivity for multiple stimulus features in retinal ganglion cells.
Fairhall AL, Burlingame CA, Narasimhan R, Harris RA, Puchalla JL, Berry MJ 2nd., J. Neurophysiol. 96(5), 2006
PMID: 16914609
Behavioral stochastic resonance: how a noisy army betrays its outpost.
Freund JA, Kienert J, Schimansky-Geier L, Beisner B, Neiman A, Russell DF, Yakusheva T, Moss F., Phys Rev E Stat Nonlin Soft Matter Phys 63(3 Pt 1), 2001
PMID: 11308681

AUTHOR UNKNOWN, 0
From stimulus encoding to feature extraction in weakly electric fish.
Gabbiani F, Metzner W, Wessel R, Koch C., Nature 384(6609), 1996
PMID: 8955269
Limits of linear rate coding of dynamic stimuli by electroreceptor afferents.
Gussin D, Benda J, Maler L., J. Neurophysiol. 97(4), 2007
PMID: 17287436

AUTHOR UNKNOWN, 0
Edge-detection filter improves spatial resolution in the electrosensory system of the paddlefish.
Hofmann MH, Chagnaud BP, Wilkens LA., J. Neurophysiol. 102(2), 2009
PMID: 19458141
Temporal analysis of moving DC electric fields in aquatic media.
Hofmann MH, Wilkens LA., Phys Biol 2(1), 2005
PMID: 16204853

Hollmann, Proc. 7th Int. Congress of Neuroethology, Nyborg/Denmark (), 2004
Robust temporal coding in the trigeminal system.
Jones LM, Depireux DA, Simons DJ, Keller A., Science 304(5679), 2004
PMID: 15218153

Kalmijn, Handb Sens Physiol 3(), 1974

AUTHOR UNKNOWN, 0
Measuring spike train synchrony.
Kreuz T, Haas JS, Morelli A, Abarbanel HD, Politi A., J. Neurosci. Methods 165(1), 2007
PMID: 17628690

Lissmann, J Exp Biol 35(), 1958
Fractional differentiation by neocortical pyramidal neurons.
Lundstrom BN, Higgs MH, Spain WJ, Fairhall AL., Nat. Neurosci. 11(11), 2008
PMID: 18931665
Representation of acoustic communication signals by insect auditory receptor neurons.
Machens CK, Stemmler MB, Prinz P, Krahe R, Ronacher B, Herz AV., J. Neurosci. 21(9), 2001
PMID: 11312306
Theoretical analysis of pre-receptor image conditioning in weakly electric fish.
Migliaro A, Caputi AA, Budelli R., PLoS Comput. Biol. 1(2), 2005
PMID: 16110331

Moller, 1995
Role of precise spike timing in coding of dynamic vibrissa stimuli in somatosensory thalamus.
Montemurro MA, Panzeri S, Maravall M, Alenda A, Bale MR, Brambilla M, Petersen RS., J. Neurophysiol. 98(4), 2007
PMID: 17671103
Converging electroreceptor cells improve sensitivity and tuning.
Peters RC, Brans RJ, Bretschneider F, Versteeg E, Went A., Neuroscience 81(1), 1997
PMID: 9300422

AUTHOR UNKNOWN, 0
On the electrodetection threshold of aquatic vertebrates with ampullary or mucous gland electroreceptor organs.
Peters RC, Eeuwes LB, Bretschneider F., Biol Rev Camb Philos Soc 82(3), 2007
PMID: 17624959

Peters, Adv Biosci 70(), 1988
Multisensory enhancement of electromotor responses to a single moving object.
Pluta SR, Kawasaki M., J. Exp. Biol. 211(Pt 18), 2008
PMID: 18775929

Rieke, 1997
Assessing the performance of neural encoding models in the presence of noise.
Roddey JC, Girish B, Miller JP., J Comput Neurosci 8(2), 2000
PMID: 10798596
Spike-timing precision underlies the coding efficiency of auditory receptor neurons.
Rokem A, Watzl S, Gollisch T, Stemmler M, Herz AV, Samengo I., J. Neurophysiol. 95(4), 2005
PMID: 16354733
Neural variability, detection thresholds, and information transmission in the vestibular system.
Sadeghi SG, Chacron MJ, Taylor MC, Cullen KE., J. Neurosci. 27(4), 2007
PMID: 17251416
Two-dimensional time coding in the auditory brainstem.
Slee SJ, Higgs MH, Fairhall AL, Spain WJ., J. Neurosci. 25(43), 2005
PMID: 16251446

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Information theoretic analysis of dynamical encoding by four identified primary sensory interneurons in the cricket cercal system.
Theunissen F, Roddey JC, Stufflebeam S, Clague H, Miller JP., J. Neurophysiol. 75(4), 1996
PMID: 8727382
A novel spike distance.
van Rossum MC., Neural Comput 13(4), 2001
PMID: 11255567

von, J Physiol 98(), 2004
Non-visual environmental imaging and object detection through active electrolocation in weakly electric fish.
von der Emde G., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(6), 2006
PMID: 16645886

von, J Exp Biol 201(), 1998

von, J Physiol 96(), 2002
Coding of time-varying electric field amplitude modulations in a wave-type electric fish.
Wessel R, Koch C, Gabbiani F., J. Neurophysiol. 75(6), 1996
PMID: 8793741
The electric sense of the paddlefish: a passive system for the detection and capture of zooplankton prey.
Wilkens LA, Hofmann MH, Wojtenek W., J. Physiol. Paris 96(5-6), 2002
PMID: 14692485
Paddlefish strike at artificial dipoles simulating the weak electric fields of planktonic prey.
Wojtenek W, Pei X, Wilkens LA., J. Exp. Biol. 204(Pt 8), 2001
PMID: 11273801
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 20685928
PubMed | Europe PMC

Suchen in

Google Scholar