Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7

Streitner C, Hennig L, Korneli C, Staiger D (2010)
BMC Plant Biology 10(1): 221.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
Background: The clock-controlled RNA-binding protein AtGRP7 influences circadian oscillations of its own transcript at the post-transcriptional level. To identify additional targets that are regulated by AtGRP7, transcript profiles of transgenic plants constitutively overexpressing AtGRP7 (AtGRP7-ox) and wild type plants were compared. Results: Approximately 1.4% of the transcripts represented on the Affymetrix ATH1 microarray showed changes in steady-state abundance upon AtGRP7 overexpression. One third of the differentially expressed genes are controlled by the circadian clock, and they show a distinct bias of their phase: The up-regulated genes preferentially peak around dawn, roughly opposite to the AtGRP7 peak abundance whereas the down-regulated genes preferentially peak at the end of the day. Further, transcripts responsive to abiotic and biotic stimuli were enriched among AtGRP7 targets. Transcripts encoding the pathogenesis-related PR1 and PR2 proteins were elevated in AtGRP7-ox plants but not in plants overexpressing AtGRP7 with a point mutation in the RNA-binding domain, indicating that the regulation involves RNA binding activity of AtGRP7. Gene set enrichment analysis uncovered components involved in ribosome function and RNA metabolism among groups of genes upregulated in AtGRP7-ox plants, consistent with its role in post-transcriptional regulation. Conclusion: Apart from regulating a suite of circadian transcripts in a time-of-day dependent manner AtGRP7, both directly and indirectly, affects other transcripts including transcripts responsive to abiotic and biotic stimuli. This suggests a regulatory role of AtGRP7 in the output of the endogenous clock and a complex network of transcripts responsive to external stimuli downstream of the AtGRP7 autoregulatory circuit.
Erscheinungsjahr
2010
Zeitschriftentitel
BMC Plant Biology
Band
10
Ausgabe
1
Art.-Nr.
221
ISSN
1471-2229
Page URI
https://pub.uni-bielefeld.de/record/1929295

Zitieren

Streitner C, Hennig L, Korneli C, Staiger D. Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7. BMC Plant Biology. 2010;10(1): 221.
Streitner, C., Hennig, L., Korneli, C., & Staiger, D. (2010). Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7. BMC Plant Biology, 10(1), 221. https://doi.org/10.1186/1471-2229-10-221
Streitner, Corinna, Hennig, Lars, Korneli, Christin, and Staiger, Dorothee. 2010. “Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7”. BMC Plant Biology 10 (1): 221.
Streitner, C., Hennig, L., Korneli, C., and Staiger, D. (2010). Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7. BMC Plant Biology 10:221.
Streitner, C., et al., 2010. Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7. BMC Plant Biology, 10(1): 221.
C. Streitner, et al., “Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7”, BMC Plant Biology, vol. 10, 2010, : 221.
Streitner, C., Hennig, L., Korneli, C., Staiger, D.: Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7. BMC Plant Biology. 10, : 221 (2010).
Streitner, Corinna, Hennig, Lars, Korneli, Christin, and Staiger, Dorothee. “Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7”. BMC Plant Biology 10.1 (2010): 221.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:57:12Z
MD5 Prüfsumme
3ea6443414274832cc040aacb9557ebc


Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

28 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

On the move through time - a historical review of plant clock research.
Johansson M, Köster T., Plant Biol (Stuttg) 21 Suppl 1(), 2019
PMID: 29607587
The Plant Circadian Oscillator.
McClung CR., Biology (Basel) 8(1), 2019
PMID: 30870980
Different copies of SENSITIVITY TO RED LIGHT REDUCED 1 show strong subfunctionalization in Brassica napus.
Schiessl S, Williams N, Specht P, Staiger D, Johansson M., BMC Plant Biol 19(1), 2019
PMID: 31438864
Genome-Wide Association Analyses Reveal the Importance of Alternative Splicing in Diversifying Gene Function and Regulating Phenotypic Variation in Maize.
Chen Q, Han Y, Liu H, Wang X, Sun J, Zhao B, Li W, Tian J, Liang Y, Yan J, Yang X, Tian F., Plant Cell 30(7), 2018
PMID: 29967286
Beyond Transcription: Fine-Tuning of Circadian Timekeeping by Post-Transcriptional Regulation.
Mateos JL, de Leone MJ, Torchio J, Reichel M, Staiger D., Genes (Basel) 9(12), 2018
PMID: 30544736
Light Regulation of Alternative Pre-mRNA Splicing in Plants.
Zhang H, Lin C, Gu L., Photochem Photobiol 93(1), 2017
PMID: 27925216
Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold.
Zhu X, Bührer C, Wellmann S., Cell Mol Life Sci 73(20), 2016
PMID: 27147467
Time to flower: interplay between photoperiod and the circadian clock.
Johansson M, Staiger D., J Exp Bot 66(3), 2015
PMID: 25371508
Environmental stresses modulate abundance and timing of alternatively spliced circadian transcripts in Arabidopsis.
Filichkin SA, Cumbie JS, Dharmawardhana P, Jaiswal P, Chang JH, Palusa SG, Reddy AS, Megraw M, Mockler TC., Mol Plant 8(2), 2015
PMID: 25680774
RNA around the clock - regulation at the RNA level in biological timing.
Nolte C, Staiger D., Front Plant Sci 6(), 2015
PMID: 25999975
Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity.
Hackmann C, Korneli C, Kutyniok M, Köster T, Wiedenlübbert M, Müller C, Staiger D., Plant Cell Environ 37(3), 2014
PMID: 23961939
A glycine-rich RNA-binding protein affects gibberellin biosynthesis in Arabidopsis.
Löhr B, Streitner C, Steffen A, Lange T, Staiger D., Mol Biol Rep 41(1), 2014
PMID: 24281950
Regulation of pri-miRNA processing by the hnRNP-like protein AtGRP7 in Arabidopsis.
Köster T, Meyer K, Weinholdt C, Smith LM, Lummer M, Speth C, Grosse I, Weigel D, Staiger D., Nucleic Acids Res 42(15), 2014
PMID: 25104024
Mutational definition of binding requirements of an hnRNP-like protein in Arabidopsis using fluorescence correlation spectroscopy.
Leder V, Lummer M, Tegeler K, Humpert F, Lewinski M, Schüttpelz M, Staiger D., Biochem Biophys Res Commun 453(1), 2014
PMID: 25251471
Emerging role for RNA-based regulation in plant immunity.
Staiger D, Korneli C, Lummer M, Navarro L., New Phytol 197(2), 2013
PMID: 23163405
A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants.
Lummer M, Humpert F, Wiedenlübbert M, Sauer M, Schüttpelz M, Staiger D., Mol Plant 6(5), 2013
PMID: 23434876
Ribonucleoprotein complexes that control circadian clocks.
Wang D, Liang X, Chen X, Guo J., Int J Mol Sci 14(5), 2013
PMID: 23698761
The circadian clock goes genomic.
Staiger D, Shin J, Johansson M, Davis SJ., Genome Biol 14(6), 2013
PMID: 23796230
Plant RNA binding proteins for control of RNA virus infection.
Huh SU, Paek KH., Front Physiol 4(), 2013
PMID: 24427141
An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana.
Streitner C, Köster T, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D., Nucleic Acids Res 40(22), 2012
PMID: 23042250
Structure function analysis of an ADP-ribosyltransferase type III effector and its RNA-binding target in plant immunity.
Jeong BR, Lin Y, Joe A, Guo M, Korneli C, Yang H, Wang P, Yu M, Cerny RL, Staiger D, Alfano JR, Xu Y., J Biol Chem 286(50), 2011
PMID: 22013065

63 References

Daten bereitgestellt von Europe PubMed Central.

A proteomic analysis of oligo(dT)-bound mRNP containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and ATGRP8.
Schmidt F, Marnef A, Cheung MK, Wilson I, Hancock J, Staiger D, Ladomery M., Mol. Biol. Rep. 37(2), 2009
PMID: 19672695
AtGRP7 is involved in the regulation of abscisic acid and stress responses in Arabidopsis.
Cao S, Jiang L, Song S, Jing R, Xu G., Cell. Mol. Biol. Lett. 11(4), 2006
PMID: 17001447
A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity.
Fu ZQ, Guo M, Jeong BR, Tian F, Elthon TE, Cerny RL, Staiger D, Alfano JR., Nature 447(7142), 2007
PMID: 17450127
Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana.
Kim JS, Jung HJ, Lee HJ, Kim KA, Goh CH, Woo Y, Oh SH, Han YS, Kang H., Plant J. 55(3), 2008
PMID: 18410480
The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana.
Streitner C, Danisman S, Wehrle F, Schoning JC, Alfano JR, Staiger D., Plant J. 56(2), 2008
PMID: 18573194
Comes a time.
McClung CR., Curr. Opin. Plant Biol. 11(5), 2008
PMID: 18678522
Clockwork Green - the circadian oscillator in Arabidopsis
AUTHOR UNKNOWN, 2006
Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock.
Farre EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA., Curr. Biol. 15(1), 2005
PMID: 15649364
Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana.
Locke JC, Kozma-Bognar L, Gould PD, Feher B, Kevei E, Nagy F, Turner MS, Hall A, Millar AJ., Mol. Syst. Biol. 2(), 2006
PMID: 17102804
The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering.
Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carre IA, Coupland G., Cell 93(7), 1998
PMID: 9657154
Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock.
Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA., Science 293(5531), 2001
PMID: 11486091
The circadian clock in Arabidopsis roots is a simplified slave version of the clock in shoots.
James AB, Monreal JA, Nimmo GA, Kelly CL, Herzyk P, Jenkins GI, Nimmo HG., Science 322(5909), 2008
PMID: 19095940
AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana.
Heintzen C, Nater M, Apel K, Staiger D., Proc. Natl. Acad. Sci. U.S.A. 94(16), 1997
PMID: 9238008
Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation.
Schoning JC, Streitner C, Page DR, Hennig S, Uchida K, Wolf E, Furuya M, Staiger D., Plant J. 52(6), 2007
PMID: 17924945
Changes in conformational dynamics of mRNA upon AtGRP7 binding studied by fluorescence correlation spectroscopy.
Schuttpelz M, Schoning JC, Doose S, Neuweiler H, Peters E, Staiger D, Sauer M., J. Am. Chem. Soc. 130(29), 2008
PMID: 18576621
The circadian system of Arabidopsis thaliana: forward and reverse genetic approaches.
Staiger D, Heintzen C., Chronobiol. Int. 16(1), 1999
PMID: 10023572
RNA-binding proteins and circadian rhythms in Arabidopsis thaliana.
Staiger D., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 356(1415), 2001
PMID: 11710982
RNA-binding proteins and post-transcriptional gene regulation.
Glisovic T, Bachorik JL, Yong J, Dreyfuss G., FEBS Lett. 582(14), 2008
PMID: 18342629
RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance.
Gong Z, Lee H, Xiong L, Jagendorf A, Stevenson B, Zhu JK., Proc. Natl. Acad. Sci. U.S.A. 99(17), 2002
PMID: 12165572
FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs.
Schomburg FM, Patton DA, Meinke DW, Amasino RM., Plant Cell 13(6), 2001
PMID: 11402170
Additional targets of the Arabidopsis autonomous pathway members, FCA and FY.
Marquardt S, Boss PK, Hadfield J, Dean C., J. Exp. Bot. 57(13), 2006
PMID: 16940039
The spen family protein FPA controls alternative cleavage and polyadenylation of RNA.
Hornyik C, Terzi LC, Simpson GG., Dev. Cell 18(2), 2010
PMID: 20079695
FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock.
Edwards KD, Anderson PE, Hall A, Salathia NS, Locke JC, Lynn JR, Straume M, Smith JQ, Millar AJ., Plant Cell 18(3), 2006
PMID: 16473970
The common function of a novel subfamily of B-Box zinc finger proteins with reference to circadian-associated events in Arabidopsis thaliana.
Kumagai T, Ito S, Nakamichi N, Niwa Y, Murakami M, Yamashino T, Mizuno T., Biosci. Biotechnol. Biochem. 72(6), 2008
PMID: 18540109
Functional analysis of Arabidopsis ethylene-responsive element binding protein conferring resistance to Bax and abiotic stress-induced plant cell death.
Ogawa T, Pan L, Kawai-Yamada M, Yu LH, Yamamura S, Koyama T, Kitajima S, Ohme-Takagi M, Sato F, Uchimiya H., Plant Physiol. 138(3), 2005
PMID: 15980186
PAGE: parametric analysis of gene set enrichment.
Kim SY, Volsky DJ., BMC Bioinformatics 6(), 2005
PMID: 15941488
Slave to the rhythm
AUTHOR UNKNOWN, 2004
Multiple and slave oscillators
AUTHOR UNKNOWN, 2006
The ins and outs of circadian timekeeping.
Brown SA, Schibler U., Curr. Opin. Genet. Dev. 9(5), 1999
PMID: 10508692
The novel MYB protein EARLY-PHYTOCHROME-RESPONSIVE1 is a component of a slave circadian oscillator in Arabidopsis.
Kuno N, Moller SG, Shinomura T, Xu X, Chua NH, Furuya M., Plant Cell 15(10), 2003
PMID: 14523250
A morning-specific phytohormone gene expression program underlying rhythmic plant growth.
Michael TP, Breton G, Hazen SP, Priest H, Mockler TC, Kay SA, Chory J., PLoS Biol. 6(9), 2008
PMID: 18798691
Acquired resistance in Arabidopsis.
Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J., Plant Cell 4(6), 1992
PMID: 1392589
Genes controlling expression of defense responses in Arabidopsis.
Glazebrook J., Curr. Opin. Plant Biol. 2(4), 1999
PMID: 10458996
Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development.
Covington MF, Maloof JN, Straume M, Kay SA, Harmer SL., Genome Biol. 9(8), 2008
PMID: 18710561
The RNA structure alignment ontology.
Brown JW, Birmingham A, Griffiths PE, Jossinet F, Kachouri-Lafond R, Knight R, Lang BF, Leontis N, Steger G, Stombaugh J, Westhof E., RNA 15(9), 2009
PMID: 19622678
Identification of target mRNAs for the clock-controlled RNA-binding protein Chlamy 1 from Chlamydomonas reinhardtii.
Waltenberger H, Schneid C, Grosch JO, Bareiss A, Mittag M., Mol. Genet. Genomics 265(1), 2001
PMID: 11370865
Mouse period 2 mRNA circadian oscillation is modulated by PTB-mediated rhythmic mRNA degradation.
Woo KC, Kim TD, Lee KH, Kim DY, Kim W, Lee KY, Kim KT., Nucleic Acids Res. 37(1), 2008
PMID: 19010962
A revised medium for rapid growth and bio assays with tobacco tissue cultures
AUTHOR UNKNOWN, 1962
A model based background adjustement for oligonucleotide expression arrays
AUTHOR UNKNOWN, 2004

AUTHOR UNKNOWN, 2009
The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1.
Kohler C, Hennig L, Spillane C, Pien S, Gruissem W, Grossniklaus U., Genes Dev. 17(12), 2003
PMID: 12815071
Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing
AUTHOR UNKNOWN, 1995
Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis.
Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR., Plant Physiol. 139(1), 2005
PMID: 16166256
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 20946635
PubMed | Europe PMC

Suchen in

Google Scholar