How 5000 independent rowers coordinate their strokes in order to row into the sunlight: Phototaxis in the multicellular green alga Volvox

Ueki N, Matsunaga S, Inouye I, Hallmann A (2010)
BMC Biology 8(1): 103.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Ueki, Noriko; Matsunaga, S.; Inouye, I.; Hallmann, ArminUniBi
Abstract / Bemerkung
ABSTRACT: BACKGROUND: The evolution of multicellular motile organisms from unicellular ancestors required the utilization of previously evolved tactic behavior in a multicellular context. Volvocine green algae are uniquely suited for studying tactic responses during the transition to multicellularity because they range in complexity from unicellular to multicellular genera. Phototactic responses are essential for these flagellates because they need to orientate themselves to receive sufficient light for photosynthesis, but how does a multicellular organism accomplish phototaxis without any known direct communication among cells? Several aspects of the photoresponse have previously been analyzed in volvocine algae, particularly in the unicellular alga Chlamydomonas. RESULTS: In this study, the phototactic behavior in the spheroidal, multicellular volvocine green alga Volvox rousseletii (Volvocales, Chlorophyta) was analyzed. In response to light stimuli, not only did the flagella waveform and beat frequency change, but the effective stroke was reversed. Moreover, there was a photoresponse gradient from the anterior to the posterior pole of the spheroid, and only cells of the anterior hemisphere showed an effective response. The latter caused a reverse of the fluid flow that was confined to the anterior hemisphere. The responsiveness to light is consistent with an anterior-to-posterior size gradient of eyespots. At the posterior pole, the eyespots are tiny or absent, making the corresponding cells appear to be blind. Pulsed light stimulation of an immobilized spheroid was used to simulate the light fluctuation experienced by a rotating spheroid during phototaxis. The results demonstrated that in free-swimming spheroids, only those cells of the anterior hemisphere that face toward the light source reverse the beating direction in the presence of illumination; this behavior results in phototactic turning. Moreover, positive phototaxis is facilitated by gravitational forces. Under our conditions, V. rousseletii spheroids showed no negative phototaxis. CONCLUSIONS: On the basis of our results, we developed a mechanistic model that predicts the phototactic behavior in V. rousseletii. The model involves photoresponses, periodically changing light conditions, morphological polarity, rotation of the spheroid, two modes of flagellar beating, and the impact of gravity. Our results also indicate how recently evolved multicellular organisms adapted the phototactic capabilities of their unicellular ancestors to multicellular life.
Erscheinungsjahr
2010
Zeitschriftentitel
BMC Biology
Band
8
Ausgabe
1
Art.-Nr.
103
ISSN
1741-7007
Page URI
https://pub.uni-bielefeld.de/record/1900958

Zitieren

Ueki N, Matsunaga S, Inouye I, Hallmann A. How 5000 independent rowers coordinate their strokes in order to row into the sunlight: Phototaxis in the multicellular green alga Volvox. BMC Biology. 2010;8(1): 103.
Ueki, N., Matsunaga, S., Inouye, I., & Hallmann, A. (2010). How 5000 independent rowers coordinate their strokes in order to row into the sunlight: Phototaxis in the multicellular green alga Volvox. BMC Biology, 8(1), 103. https://doi.org/10.1186/1741-7007-8-103
Ueki, Noriko, Matsunaga, S., Inouye, I., and Hallmann, Armin. 2010. “How 5000 independent rowers coordinate their strokes in order to row into the sunlight: Phototaxis in the multicellular green alga Volvox”. BMC Biology 8 (1): 103.
Ueki, N., Matsunaga, S., Inouye, I., and Hallmann, A. (2010). How 5000 independent rowers coordinate their strokes in order to row into the sunlight: Phototaxis in the multicellular green alga Volvox. BMC Biology 8:103.
Ueki, N., et al., 2010. How 5000 independent rowers coordinate their strokes in order to row into the sunlight: Phototaxis in the multicellular green alga Volvox. BMC Biology, 8(1): 103.
N. Ueki, et al., “How 5000 independent rowers coordinate their strokes in order to row into the sunlight: Phototaxis in the multicellular green alga Volvox”, BMC Biology, vol. 8, 2010, : 103.
Ueki, N., Matsunaga, S., Inouye, I., Hallmann, A.: How 5000 independent rowers coordinate their strokes in order to row into the sunlight: Phototaxis in the multicellular green alga Volvox. BMC Biology. 8, : 103 (2010).
Ueki, Noriko, Matsunaga, S., Inouye, I., and Hallmann, Armin. “How 5000 independent rowers coordinate their strokes in order to row into the sunlight: Phototaxis in the multicellular green alga Volvox”. BMC Biology 8.1 (2010): 103.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:57:10Z
MD5 Prüfsumme
9adb438706c6101035da8cd9e7a37167


17 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Coherent directed movement toward food modeled in Trichoplax, a ciliated animal lacking a nervous system.
Smith CL, Reese TS, Govezensky T, Barrio RA., Proc Natl Acad Sci U S A 116(18), 2019
PMID: 30979806
Direction of flagellum beat propagation is controlled by proximal/distal outer dynein arm asymmetry.
Edwards BFL, Wheeler RJ, Barker AR, Moreira-Leite FF, Gull K, Sunter JD., Proc Natl Acad Sci U S A 115(31), 2018
PMID: 30030284
Identification of the agg1 mutation responsible for negative phototaxis in a "wild-type" strain of Chlamydomonas reinhardtii.
Ide T, Mochiji S, Ueki N, Yamaguchi K, Shigenobu S, Hirono M, Wakabayashi KI., Biochem Biophys Rep 7(), 2016
PMID: 28955929
Green Algae as Model Organisms for Biological Fluid Dynamics.
Goldstein RE., Annu Rev Fluid Mech 47(), 2015
PMID: 26594068
The simplest integrated multicellular organism unveiled.
Arakaki Y, Kawai-Toyooka H, Hamamura Y, Higashiyama T, Noga A, Hirono M, Olson BJ, Nozaki H., PLoS One 8(12), 2013
PMID: 24349103
Genomics of Volvocine Algae.
Umen JG, Olson BJ., Adv Bot Res 64(), 2012
PMID: 25883411
Genomics of Volvocine Algae
Umen JG, Olson BJSC., Adv Bot Res 64(), 2012
PMID: IND601117399
Functional identification of triterpene methyltransferases from Botryococcus braunii race B.
Niehaus TD, Kinison S, Okada S, Yeo YS, Bell SA, Cui P, Devarenne TP, Chappell J., J Biol Chem 287(11), 2012
PMID: 22241476
Evolution of reproductive development in the volvocine algae.
Hallmann A., Sex Plant Reprod 24(2), 2011
PMID: 21174128

107 References

Daten bereitgestellt von Europe PubMed Central.

The major evolutionary transitions.
Szathmary E, Smith JM., Nature 374(6519), 1995
PMID: 7885442
The origins of multicellularity
AUTHOR UNKNOWN, 1998
The evolution of multicellularity: a minor major transition?
AUTHOR UNKNOWN, 2007
Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri.
Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I, Ferris P, Kuo A, Mitros T, Fritz-Laylin LK, Hellsten U, Chapman J, Simakov O, Rensing SA, Terry A, Pangilinan J, Kapitonov V, Jurka J, Salamov A, Shapiro H, Schmutz J, Grimwood J, Lindquist E, Lucas S, Grigoriev IV, Schmitt R, Kirk D, Rokhsar DS., Science 329(5988), 2010
PMID: 20616280

AUTHOR UNKNOWN, 1998
Triassic origin and early radiation of multicellular volvocine algae.
Herron MD, Hackett JD, Aylward FO, Michod RE., Proc. Natl. Acad. Sci. U.S.A. 106(9), 2009
PMID: 19223580
Molecular phylogeny of the volvocine flagellates.
Larson A, Kirk MM, Kirk DL., Mol. Biol. Evol. 9(1), 1992
PMID: 1552843
Phylogenetic relationships within the colonial Volvocales (Chlorophyta) inferred from rbcL gene sequence data
AUTHOR UNKNOWN, 1995
Phylogenetic analysis of "Volvocacae" for comparative genetic studies.
Coleman AW., Proc. Natl. Acad. Sci. U.S.A. 96(24), 1999
PMID: 10570169
Reexamination of phylogenetic relationships within the colonial Volvocales (Chlorophyta): an analysis of atpB and rbcL gene sequences
AUTHOR UNKNOWN, 1999
Evolution of rbcL group IA introns and intron open reading frames within the colonial Volvocales (Chlorophyceae).
Nozaki H, Takahara M, Nakazawa A, Kita Y, Yamada T, Takano H, Kawano S, Kato M., Mol. Phylogenet. Evol. 23(3), 2002
PMID: 12099791
A comparative study of the species of Volvox
AUTHOR UNKNOWN, 1944
Phylogenetic analysis of Yamagishiella and Platydorina (Volvocaceae, Chlorophyta) based on rbcL gene sequences
AUTHOR UNKNOWN, 1997
Origin and evolution of the genera Pleodorina and Volvox (Volvocales)
AUTHOR UNKNOWN, 2003
Morphology, molecular phylogeny and taxonomy of two new species of Pleodorina (Volvoceae, Chlorophyceae)
AUTHOR UNKNOWN, 2006
Photoorientation in photosynthetic flagellates.
Hader DP, Lebert M., Methods Mol. Biol. 571(), 2009
PMID: 19763958
Channelrhodopsin-1: a light-gated proton channel in green algae.
Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P., Science 296(5577), 2002
PMID: 12089443
Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii.
Sineshchekov OA, Jung KH, Spudich JL., Proc. Natl. Acad. Sci. U.S.A. 99(13), 2002
PMID: 12060707
Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization.
Suzuki T, Yamasaki K, Fujita S, Oda K, Iseki M, Yoshida K, Watanabe M, Daiyasu H, Toh H, Asamizu E, Tabata S, Miura K, Fukuzawa H, Nakamura S, Takahashi T., Biochem. Biophys. Res. Commun. 301(3), 2003
PMID: 12565839
Channelrhodopsin-2, a directly light-gated cation-selective membrane channel.
Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E., Proc. Natl. Acad. Sci. U.S.A. 100(24), 2003
PMID: 14615590
Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri.
Zhang F, Prigge M, Beyriere F, Tsunoda SP, Mattis J, Yizhar O, Hegemann P, Deisseroth K., Nat. Neurosci. 11(6), 2008
PMID: 18432196
Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements.
Schmidt M, Gessner G, Luff M, Heiland I, Wagner V, Kaminski M, Geimer S, Eitzinger N, Reissenweber T, Voytsekh O, Fiedler M, Mittag M, Kreimer G., Plant Cell 18(8), 2006
PMID: 16798888
Algal sensory photoreceptors.
Hegemann P., Annu Rev Plant Biol 59(), 2008
PMID: 18444900
Motility in the colonial and multicellular Volvocales: structure, function, and evolution
AUTHOR UNKNOWN, 1997
The relationship between stimulus intensity and oriented phototactic response (topotaxis) in Chlamydomonas
AUTHOR UNKNOWN, 1971
High-speed cinematographic analysis of the movement of Chlamydomonas
AUTHOR UNKNOWN, 1985
Comparison of the beating of cis- and trans-flagella of Chlamydomonas cells held on micropipettes
AUTHOR UNKNOWN, 1987
Flagellar photoresponses of Chlamydomonas cells held on micropipettes: I. Change in flagellar beat frequency
AUTHOR UNKNOWN, 1990
Flagellar photoresponses of Chlamydomonas cells held on micropipettes: II. Change in flagellar beat pattern
AUTHOR UNKNOWN, 1991
Chlamydomonas swims with two "gears" in a eukaryotic version of run-and-tumble locomotion.
Polin M, Tuval I, Drescher K, Gollub JP, Goldstein RE., Science 325(5939), 2009
PMID: 19628868
Photoisomerization of retinal at 13-ene is important for phototaxis of Chlamydomonas reinhardtii: simultaneous measurements of phototactic and photophobic responses.
Takahashi T, Yoshihara K, Watanabe M, Kubota M, Johnson R, Derguini F, Nakanishi K., Biochem. Biophys. Res. Commun. 178(3), 1991
PMID: 1872847
Flagellar coordination in Chlamydomonas cells held on micropipettes.
Ruffer U, Nultsch W., Cell Motil. Cytoskeleton 41(4), 1998
PMID: 9858155
Calcium control of waveform in isolated flagellar axonemes of Chlamydomonas.
Bessen M, Fay RB, Witman GB., J. Cell Biol. 86(2), 1980
PMID: 6447155
Chlamydomonas phototaxis.
Witman GB., Trends Cell Biol. 3(11), 1993
PMID: 14731659
Die Zelldifferenzierung bei Pleodorina californica Shaw und die Organisation der Phytomonadinenkolonien
AUTHOR UNKNOWN, 1959
Flagellar, cellular and organismal polarity in Volvox carteri
AUTHOR UNKNOWN, 1993
Development of the flagellar apparatus and flagellar orientation in the colonial green alga Gonium pectorale (Volvocales)
AUTHOR UNKNOWN, 1985
Reactions to light in Volvox, with special reference to the process of orientation
AUTHOR UNKNOWN, 1926
Systema naturae. Regnum animale
AUTHOR UNKNOWN, 1758
Phototaxis in Volvox
AUTHOR UNKNOWN, 1903
Light reactions in lower organisms. II. Volvox globator
AUTHOR UNKNOWN, 1907

AUTHOR UNKNOWN, 1911
The process of orientation in the colonial organism, Gonium pectorale, and a study of the structure and function of the eye-spot
AUTHOR UNKNOWN, 1916
Bewegung und Orientierung bei Volvox aureus Ehrb. I. Mechanismus der phototaktischen Reaktion
AUTHOR UNKNOWN, 1970
Flagellar activity of the colony members of Volvox aureus Ehrbg. during light stimulation
AUTHOR UNKNOWN, 1971
Temperature effect on the photo-accumulation and phobic response of Volvox aureus
AUTHOR UNKNOWN, 1977
Two photophobic responses in Volvox carteri
AUTHOR UNKNOWN, 1979
Effect of external ionic environment on phototaxis of Volvox carteri
AUTHOR UNKNOWN, 1979
A test of two possible mechanisms for phototactic steering in Volvox carteri (Chlorophyceae)
AUTHOR UNKNOWN, 1999
Volvoxrhodopsin, a light-regulated sensory photoreceptor of the spheroidal green alga Volvox carteri.
Ebnet E, Fischer M, Deininger W, Hegemann P., Plant Cell 11(8), 1999
PMID: 10449581
Multicellularity and the functional interdependence of motility and molecular transport.
Solari CA, Ganguly S, Kessler JO, Michod RE, Goldstein RE., Proc. Natl. Acad. Sci. U.S.A. 103(5), 2006
PMID: 16421211
Fidelity of adaptive phototaxis.
Drescher K, Goldstein RE, Tuval I., Proc. Natl. Acad. Sci. U.S.A. 107(25), 2010
PMID: 20534560
Die Plasmaverbindung und die Membranen von Volvox globator, aureus und tertius, mit Rücksicht auf die thierischen Zellen
AUTHOR UNKNOWN, 1896
Cytoplasmic bridges in Volvox and its relatives
AUTHOR UNKNOWN, 2005
Phototaxis bei Volvox. Pigmentsysteme der Lichtrichtungsperzeption
AUTHOR UNKNOWN, 1976

AUTHOR UNKNOWN, 1935
Molecular delineation of species and syngens in volvocacean green algae (Chlorophyta)
AUTHOR UNKNOWN, 1994
Derivation of the secondary structure of the ITS-1 transcript in Volvocales and its taxonomic correlations
AUTHOR UNKNOWN, 1998
Origin and evolution of the colonial volvocales (Chlorophyceae) as inferred from multiple, chloroplast gene sequences.
Nozaki H, Misawa K, Kajita T, Kato M, Nohara S, Watanabe MM., Mol. Phylogenet. Evol. 17(2), 2000
PMID: 11083939
Hydrodynamic phenomena in suspensions of swimming microorganisms
AUTHOR UNKNOWN, 1992
Dancing volvox: hydrodynamic bound states of swimming algae.
Drescher K, Leptos KC, Tuval I, Ishikawa T, Pedley TJ, Goldstein RE., Phys. Rev. Lett. 102(16), 2009
PMID: 19518757
Volvox barberi, the fastest swimmer of the volvocales (chlorophyceae)
Solari CA, Michod RE, Goldstein RE., J. Phycol. 44(6), 2008
PMID: IND44133255
Light Antennas in phototactic algae.
Foster KW, Smyth RD., Microbiol. Rev. 44(4), 1980
PMID: 7010112
Visualization of calcium transients controlling orientation of ciliary beat.
Tamm SL, Terasaki M., J. Cell Biol. 125(5), 1994
PMID: 8195294
Electrical activity associated with ciliary reversal in an echinoderm larva
AUTHOR UNKNOWN, 1969
Electrical correlates of ciliary reversal in Oikopleura
AUTHOR UNKNOWN, 1971
The control of ciliary activity in protozoa
AUTHOR UNKNOWN, 1974
A regenerative calcium response in Paramecium.
Naitoh Y, Eckert R, Friedman K., J. Exp. Biol. 56(3), 1972
PMID: 4668720
Phototaxis in Chlamydomonas reinhardtii.
Stavis RL, Hirschberg R., J. Cell Biol. 59(2 Pt 1), 1973
PMID: 4805005
The effect of azide on phototaxis in Chlamydomonas reinhardi.
Stavis RL., Proc. Natl. Acad. Sci. U.S.A. 71(5), 1974
PMID: 4525466
Photoreceptor electric potential in the phototaxis of the alga Haematococcus pluvialis.
Litvin FF, Sineshchekov OA, Sineshchekov VA., Nature 271(5644), 1978
PMID: 628427
Effect of external factors on phototaxis of Chlamydomonas reinhardtii. III. Cations
AUTHOR UNKNOWN, 1979
Rhodopsin-regulated calcium currents in Chlamydomonas
AUTHOR UNKNOWN, 1991
Mutational analysis of the phototransduction pathway of Chlamydomonas reinhardtii.
Pazour GJ, Sineshchekov OA, Witman GB., J. Cell Biol. 131(2), 1995
PMID: 7593169
Conversion of beating mode in Chlamydomonas flagella induced by electric stimulation.
Yoshimura K, Shingyoji C, Takahashi K., Cell Motil. Cytoskeleton 36(3), 1997
PMID: 9067619
Gravitaxis in Chlamydomonas reinhardtii: characterization using video microscopy and computer analysis.
Kam V, Moseyko N, Nemson J, Feldman LJ., Int. J. Plant Sci. 160(6), 1999
PMID: 10568776
Gravitaxis in Chlamydomonas reinhardtii studied with novel mutants.
Yoshimura K, Matsuo Y, Kamiya R., Plant Cell Physiol. 44(10), 2003
PMID: 14581636
The external dynamics of swimming microorganisms
AUTHOR UNKNOWN, 1986
Bewegung und Orientierung bei Volvox aureus Ehrb. II. Richtungsabweichung bei taktischen Reaktionen
AUTHOR UNKNOWN, 1970
Artificial media for fresh-water algae: problems and suggestions
AUTHOR UNKNOWN, 1959

AUTHOR UNKNOWN, 1994
Pleodorina japonica sp. nov. (Volvocales, Chlorophyta) with bacteria-like endosymbionts
AUTHOR UNKNOWN, 1989

AUTHOR UNKNOWN, 2004
NIH Image: a public domain image processing program for the Macintosh
AUTHOR UNKNOWN, 1995
High-speed video analysis of the flagellar beat and swimming patterns of algae: possible evolutionary trends in green algae
AUTHOR UNKNOWN, 1991
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 20663212
PubMed | Europe PMC

Suchen in

Google Scholar