Predicting catalysis: Understanding ammonia synthesis from first-principles calculations

Hellman A, Baerends EJ, Biczysko M, Bligaard T, Christensen CH, Clary DC, Dahl S, van Harrevelt R, Honkala K, Jonsson H, Kroes GJ, et al. (2006)
Journal of Physical Chemistry B 110(36): 17719-17735.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Hellman, A.; Baerends, E. J.; Biczysko, M.; Bligaard, T.; Christensen, C. H.; Clary, D. C.; Dahl, S.; van Harrevelt, R.; Honkala, K.; Jonsson, H.; Kroes, G. J.; Luppi, M.
Alle
Abstract / Bemerkung
Here, we give a full account of a large collaborative effort toward an atomic-scale understanding of modern industrial ammonia production over ruthenium catalysts. We show that overall rates of ammonia production can be determined by applying various levels of theory (including transition state theory with or without tunneling corrections, and quantum dynamics) to a range of relevant elementary reaction steps, such as N-2 dissociation, H-2 dissociation, and hydrogenation of the intermediate reactants. A complete kinetic model based on the most relevant elementary steps can be established for any given point along an industrial reactor, and the kinetic results can be integrated over the catalyst bed to determine the industrial reactor yield. We find that, given the present uncertainties, the rate of ammonia production is well-determined directly from our atomic-scale calculations. Furthermore, our studies provide new insight into several related fields, for instance, gas-phase and electrochemical ammonia synthesis. The success of predicting the outcome of a catalytic reaction from first-principles calculations supports our point of view that, in the future, theory will be a fully integrated tool in the search for the next generation of catalysts.
Erscheinungsjahr
2006
Zeitschriftentitel
Journal of Physical Chemistry B
Band
110
Ausgabe
36
Seite(n)
17719-17735
ISSN
1520-6106
eISSN
1520-5207
Page URI
https://pub.uni-bielefeld.de/record/1897040

Zitieren

Hellman A, Baerends EJ, Biczysko M, et al. Predicting catalysis: Understanding ammonia synthesis from first-principles calculations. Journal of Physical Chemistry B. 2006;110(36):17719-17735.
Hellman, A., Baerends, E. J., Biczysko, M., Bligaard, T., Christensen, C. H., Clary, D. C., Dahl, S., et al. (2006). Predicting catalysis: Understanding ammonia synthesis from first-principles calculations. Journal of Physical Chemistry B, 110(36), 17719-17735. https://doi.org/10.1021/jp056982h
Hellman, A., Baerends, E. J., Biczysko, M., Bligaard, T., Christensen, C. H., Clary, D. C., Dahl, S., et al. 2006. “Predicting catalysis: Understanding ammonia synthesis from first-principles calculations”. Journal of Physical Chemistry B 110 (36): 17719-17735.
Hellman, A., Baerends, E. J., Biczysko, M., Bligaard, T., Christensen, C. H., Clary, D. C., Dahl, S., van Harrevelt, R., Honkala, K., Jonsson, H., et al. (2006). Predicting catalysis: Understanding ammonia synthesis from first-principles calculations. Journal of Physical Chemistry B 110, 17719-17735.
Hellman, A., et al., 2006. Predicting catalysis: Understanding ammonia synthesis from first-principles calculations. Journal of Physical Chemistry B, 110(36), p 17719-17735.
A. Hellman, et al., “Predicting catalysis: Understanding ammonia synthesis from first-principles calculations”, Journal of Physical Chemistry B, vol. 110, 2006, pp. 17719-17735.
Hellman, A., Baerends, E.J., Biczysko, M., Bligaard, T., Christensen, C.H., Clary, D.C., Dahl, S., van Harrevelt, R., Honkala, K., Jonsson, H., Kroes, G.J., Luppi, M., Manthe, U., Norskov, J.K., Olsen, R.A., Rossmeisl, J., Skulason, E., Tautermann, C.S., Varandas, A.J.C., Vincent, J.K.: Predicting catalysis: Understanding ammonia synthesis from first-principles calculations. Journal of Physical Chemistry B. 110, 17719-17735 (2006).
Hellman, A., Baerends, E. J., Biczysko, M., Bligaard, T., Christensen, C. H., Clary, D. C., Dahl, S., van Harrevelt, R., Honkala, K., Jonsson, H., Kroes, G. J., Luppi, M., Manthe, Uwe, Norskov, J. K., Olsen, R. A., Rossmeisl, J., Skulason, E., Tautermann, C. S., Varandas, A. J. C., and Vincent, J. K. “Predicting catalysis: Understanding ammonia synthesis from first-principles calculations”. Journal of Physical Chemistry B 110.36 (2006): 17719-17735.

31 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A theoretical study of the effect of a non-aqueous proton donor on electrochemical ammonia synthesis.
Zhang L, Mallikarjun Sharada S, Singh AR, Rohr BA, Su Y, Qiao L, Nørskov JK., Phys Chem Chem Phys 20(7), 2018
PMID: 29387843
Controlled Expansion of a Strong-Field Iron Nitride Cluster: Multi-Site Ligand Substitution as a Strategy for Activating Interstitial Nitride Nucleophilicity.
Drance MJ, Mokhtarzadeh CC, Melaimi M, Agnew DW, Moore CE, Rheingold AL, Figueroa JS., Angew Chem Int Ed Engl 57(40), 2018
PMID: 29719103
Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2 /NH3 Cycle.
Bao D, Zhang Q, Meng FL, Zhong HX, Shi MM, Zhang Y, Yan JM, Jiang Q, Zhang XB., Adv Mater 29(3), 2017
PMID: 27859722
Adsorption dynamics of molecular nitrogen at an Fe(111) surface.
Nosir MA, Martin-Gondre L, Bocan GA, Díez Muiño R., Phys Chem Chem Phys 19(10), 2017
PMID: 28243637
Accurate Neural Network Description of Surface Phonons in Reactive Gas-Surface Dynamics: N2 + Ru(0001).
Shakouri K, Behler J, Meyer J, Kroes GJ., J Phys Chem Lett 8(10), 2017
PMID: 28441867
Dissociative adsorption dynamics of nitrogen on a Fe(111) surface.
Nosir MA, Martin-Gondre L, Bocan GA, Díez Muiño R., Phys Chem Chem Phys 19(36), 2017
PMID: 28856369
Dinitrogen activation upon reduction of a triiron(II) complex.
Lee Y, Sloane FT, Blondin G, Abboud KA, García-Serres R, Murray LJ., Angew Chem Int Ed Engl 54(5), 2015
PMID: 25504859
Heterogeneous catalysis.
Schlögl R., Angew Chem Int Ed Engl 54(11), 2015
PMID: 25693734
Electron-hole pair excitation determines the mechanism of hydrogen atom adsorption.
Bünermann O, Jiang H, Dorenkamp Y, Kandratsenka A, Janke SM, Auerbach DJ, Wodtke AM., Science 350(6266), 2015
PMID: 26612832
DFT based study of transition metal nano-clusters for electrochemical NH3 production.
Howalt JG, Bligaard T, Rossmeisl J, Vegge T., Phys Chem Chem Phys 15(20), 2013
PMID: 23598667
Electrochemical ammonia production on molybdenum nitride nanoclusters.
Howalt JG, Vegge T., Phys Chem Chem Phys 15(48), 2013
PMID: 24213187
A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction.
Skúlason E, Bligaard T, Gudmundsdóttir S, Studt F, Rossmeisl J, Abild-Pedersen F, Vegge T, Jónsson H, Nørskov JK., Phys Chem Chem Phys 14(3), 2012
PMID: 22146855
Investigation of formally zerovalent Triphos iron complexes.
Mukhopadhyay TK, Feller RK, Rein FN, Henson NJ, Smythe NC, Trovitch RJ, Gordon JC., Chem Commun (Camb) 48(69), 2012
PMID: 22825701
Local density of states analysis using Bader decomposition for N2 and CO2 adsorbed on Pt(110)-(1 × 2) electrodes.
Gudmundsdóttir S, Tang W, Henkelman G, Jónsson H, Skúlason E., J Chem Phys 137(16), 2012
PMID: 23126735
Universal transition state scaling relations for (de)hydrogenation over transition metals.
Wang S, Petzold V, Tripkovic V, Kleis J, Howalt JG, Skúlason E, Fernández EM, Hvolbæk B, Jones G, Toftelund A, Falsig H, Björketun M, Studt F, Abild-Pedersen F, Rossmeisl J, Nørskov JK, Bligaard T., Phys Chem Chem Phys 13(46), 2011
PMID: 21996683
N₂reduction and hydrogenation to ammonia by a molecular iron-potassium complex.
Rodriguez MM, Bill E, Brennessel WW, Holland PL., Science 334(6057), 2011
PMID: 22076372
The role of chemistry in the energy challenge.
Schlögl R., ChemSusChem 3(2), 2010
PMID: 20041467
Metal-free heterogeneous catalysis for sustainable chemistry.
Su DS, Zhang J, Frank B, Thomas A, Wang X, Paraknowitsch J, Schlögl R., ChemSusChem 3(2), 2010
PMID: 20127789
A new analytical potential energy surface for the adsorption system CO/Cu(100).
Marquardt R, Cuvelier F, Olsen RA, Baerends EJ, Tremblay JC, Saalfrank P., J Chem Phys 132(7), 2010
PMID: 20170216
A note on the vibrational efficacy in molecule-surface reactions.
Díaz C, Olsen RA., J Chem Phys 130(9), 2009
PMID: 19275417
Accurate ab initio based DMBE potential energy surface for the ground electronic state of N2H2.
Poveda LA, Biczysko M, Varandas AJ., J Chem Phys 131(4), 2009
PMID: 19655869
Density functional theory for transition metals and transition metal chemistry.
Cramer CJ, Truhlar DG., Phys Chem Chem Phys 11(46), 2009
PMID: 19924312
Kinetic measurements of hydrocarbon conversion reactions on model metal surfaces.
Wilson J, Guo H, Morales R, Podgornov E, Lee I, Zaera F., Phys Chem Chem Phys 9(29), 2007
PMID: 17637975

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 16956255
PubMed | Europe PMC

Suchen in

Google Scholar