A multilayer multiconfigurational time-dependent Hartree approach for quantum dynamics on general potential energy surfaces

Manthe U (2008)
JOURNAL OF CHEMICAL PHYSICS 128(16): 164116.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Erscheinungsjahr
2008
Zeitschriftentitel
JOURNAL OF CHEMICAL PHYSICS
Band
128
Ausgabe
16
Art.-Nr.
164116
ISSN
0021-9606
Page URI
https://pub.uni-bielefeld.de/record/1897015

Zitieren

Manthe U. A multilayer multiconfigurational time-dependent Hartree approach for quantum dynamics on general potential energy surfaces. JOURNAL OF CHEMICAL PHYSICS. 2008;128(16): 164116.
Manthe, U. (2008). A multilayer multiconfigurational time-dependent Hartree approach for quantum dynamics on general potential energy surfaces. JOURNAL OF CHEMICAL PHYSICS, 128(16), 164116. https://doi.org/10.1063/1.2902982
Manthe, Uwe. 2008. “A multilayer multiconfigurational time-dependent Hartree approach for quantum dynamics on general potential energy surfaces”. JOURNAL OF CHEMICAL PHYSICS 128 (16): 164116.
Manthe, U. (2008). A multilayer multiconfigurational time-dependent Hartree approach for quantum dynamics on general potential energy surfaces. JOURNAL OF CHEMICAL PHYSICS 128:164116.
Manthe, U., 2008. A multilayer multiconfigurational time-dependent Hartree approach for quantum dynamics on general potential energy surfaces. JOURNAL OF CHEMICAL PHYSICS, 128(16): 164116.
U. Manthe, “A multilayer multiconfigurational time-dependent Hartree approach for quantum dynamics on general potential energy surfaces”, JOURNAL OF CHEMICAL PHYSICS, vol. 128, 2008, : 164116.
Manthe, U.: A multilayer multiconfigurational time-dependent Hartree approach for quantum dynamics on general potential energy surfaces. JOURNAL OF CHEMICAL PHYSICS. 128, : 164116 (2008).
Manthe, Uwe. “A multilayer multiconfigurational time-dependent Hartree approach for quantum dynamics on general potential energy surfaces”. JOURNAL OF CHEMICAL PHYSICS 128.16 (2008): 164116.

79 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

On regularizing the MCTDH equations of motion.
Meyer HD, Wang H., J Chem Phys 148(12), 2018
PMID: 29604814
Sticking of atomic hydrogen on graphene.
Bonfanti M, Achilli S, Martinazzo R., J Phys Condens Matter 30(28), 2018
PMID: 29845971
On regularizing the ML-MCTDH equations of motion.
Wang H, Meyer HD., J Chem Phys 149(4), 2018
PMID: 30068178
Tracing feed-back driven exciton dynamics in molecular aggregates.
Abramavicius D, Chorošajev V, Valkunas L., Phys Chem Chem Phys 20(33), 2018
PMID: 30087973
Exponential parameterization of wave functions for quantum dynamics: Time-dependent Hartree in second quantization.
Madsen NK, Hansen MB, Zoccante A, Monrad K, Hansen MB, Christiansen O., J Chem Phys 149(13), 2018
PMID: 30292211
Natural reaction channels in H + CHD3 → H2 + CD3.
Ellerbrock R, Mantheuwe U., Faraday Discuss 212(0), 2018
PMID: 30226505
Finite-temperature time-dependent variation with multiple Davydov states.
Wang L, Fujihashi Y, Chen L, Zhao Y., J Chem Phys 146(12), 2017
PMID: 28388128
A unified ab initio approach to the correlated quantum dynamics of ultracold fermionic and bosonic mixtures.
Cao L, Bolsinger V, Mistakidis SI, Koutentakis GM, Krönke S, Schurer JM, Schmelcher P., J Chem Phys 147(4), 2017
PMID: 28764383
Isotopic effects in vibrational relaxation dynamics of H on a Si(100) surface.
Bouakline F, Lorenz U, Melani G, Paramonov GK, Saalfrank P., J Chem Phys 147(14), 2017
PMID: 29031276
Excited state non-adiabatic dynamics of N-methylpyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study.
Wu G, Neville SP, Schalk O, Sekikawa T, Ashfold MN, Worth GA, Stolow A., J Chem Phys 144(1), 2016
PMID: 26747808
A two-layer approach to the coupled coherent states method.
Green JA, Grigolo A, Ronto M, Shalashilin DV., J Chem Phys 144(2), 2016
PMID: 26772558
Quantum dynamics of electronic transitions with Gauss-Hermite wave packets.
Borrelli R, Peluso A., J Chem Phys 144(11), 2016
PMID: 27004857
Quantum effects in ultrafast electron transfers within cryptochromes.
Firmino T, Mangaud E, Cailliez F, Devolder A, Mendive-Tapia D, Gatti F, Meier C, Desouter-Lecomte M, de la Lande A., Phys Chem Chem Phys 18(31), 2016
PMID: 27427185
Electron transfer within a reaction path model calibrated by constrained DFT calculations: application to mixed-valence organic compounds.
Mangaud E, de la Lande A, Meier C, Desouter-Lecomte M., Phys Chem Chem Phys 17(46), 2015
PMID: 26041466
Resonances in the entrance channel of the elementary chemical reaction of fluorine and methane.
Westermann T, Kim JB, Weichman ML, Hock C, Yacovitch TI, Palma J, Neumark DM, Manthe U., Angew Chem Int Ed Engl 53(4), 2014
PMID: 24307593
Gaussian-based multiconfiguration time-dependent Hartree: a two-layer approach. I. Theory.
Römer S, Ruckenbauer M, Burghardt I., J Chem Phys 138(6), 2013
PMID: 23425460
MCTDH study on vibrational states of the CO/Cu(100) system.
Meng Q, Meyer HD., J Chem Phys 139(16), 2013
PMID: 24182066
A second-order multi-reference perturbation method for molecular vibrations.
Mizukami W, Tew DP., J Chem Phys 139(19), 2013
PMID: 24320317
Generalized CC-TDSCF and LCSA: The system-energy representation.
López-López S, Nest M, Martinazzo R., J Chem Phys 134(1), 2011
PMID: 21218992

52 References

Daten bereitgestellt von Europe PubMed Central.

Towards accurate ab initio predictions of the vibrational spectrum of methane.
Schwenke DW., Spectrochim Acta A Mol Biomol Spectrosc 58(4), 2002
PMID: 11991499

AUTHOR UNKNOWN, 0
Quantum studies of the vibrations in H3O2- and D3O2-.
McCoy AB, Huang X, Carter S, Bowman JM., J Chem Phys 123(6), 2005
PMID: 16122318
Full-dimensional vibrational calculations for H5O2+ using an ab initio potential energy surface.
McCoy AB, Huang X, Carter S, Landeweer MY, Bowman JM., J Chem Phys 122(6), 2005
PMID: 15740358
Dynamics and infrared spectroscopy of the protonated water dimer.
Vendrell O, Gatti F, Meyer HD., Angew. Chem. Int. Ed. Engl. 46(36), 2007
PMID: 17676569

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
First-principles theory for the H + CH4 --> H2 + CH3 reaction.
Wu T, Werner HJ, Manthe U., Science 306(5705), 2004
PMID: 15618512

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18447430
PubMed | Europe PMC

Suchen in

Google Scholar