Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate

Andersson S, Nyman G, Arnaldsson A, Manthe U, Jonsson H (2009)
Journal of Physical Chemistry A 113(16): 4468-4478.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Andersson, Stefan; Nyman, Gunnar; Arnaldsson, Andri; Manthe, UweUniBi; Jonsson, Hannes
Abstract / Bemerkung
Thermal rate constants are calculated for the H + CH4 -> CH3 + H-2 reaction employing the potential energy surface of Espinosa-Garcia (Espinosa-Garcia, J. J. Chem. Phys. 2002, 116, 10664). Two theoretical approaches are used. First, we employ the multiconfigurational time-dependent Hartree method combined with flux correlation functions. In this way rate constants in the range 225-400 K are obtained and compared with previous results using the same theoretical method but the potential energy surface of Wu et al. (Wu, T.; Werner, H.-J.; Manthe, U. Science 2004, 306, 2227). It is found that the Espinosa-Garcia surface results in larger rate constants. Second, a harmonic quantum transition state theory (HQTST) implementation of instanton theory is used to obtain rate constants in a temperature interval from 20 K up to the crossover temperature at 296 K. The HQTST estimates are larger than MCTDH ones by a factor of about three in the common temperature range. Comparison is also made with various tunneling corrections to transition state theory and quantum instanton theory.
Stichworte
MULTIDIMENSIONAL TUNNELING CONTRIBUTIONS THERMAL RATE CONSTANTS EXTENDED TEMPERATURE INTERVAL HYDROGEN ABSTRACTION REACTION DEPENDENT HARTREE APPROACH FINDING SADDLE-POINTS ROTOR TARGET MODEL REDUCED-DIMENSIONALITY CHEMICAL-REACTIONS REACTIVE SCATTERING
Erscheinungsjahr
2009
Zeitschriftentitel
Journal of Physical Chemistry A
Band
113
Ausgabe
16
Seite(n)
4468-4478
ISSN
1089-5639
eISSN
1520-5215
Page URI
https://pub.uni-bielefeld.de/record/1896999

Zitieren

Andersson S, Nyman G, Arnaldsson A, Manthe U, Jonsson H. Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate. Journal of Physical Chemistry A. 2009;113(16):4468-4478.
Andersson, S., Nyman, G., Arnaldsson, A., Manthe, U., & Jonsson, H. (2009). Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate. Journal of Physical Chemistry A, 113(16), 4468-4478. https://doi.org/10.1021/jp811070w
Andersson, Stefan, Nyman, Gunnar, Arnaldsson, Andri, Manthe, Uwe, and Jonsson, Hannes. 2009. “Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate”. Journal of Physical Chemistry A 113 (16): 4468-4478.
Andersson, S., Nyman, G., Arnaldsson, A., Manthe, U., and Jonsson, H. (2009). Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate. Journal of Physical Chemistry A 113, 4468-4478.
Andersson, S., et al., 2009. Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate. Journal of Physical Chemistry A, 113(16), p 4468-4478.
S. Andersson, et al., “Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate”, Journal of Physical Chemistry A, vol. 113, 2009, pp. 4468-4478.
Andersson, S., Nyman, G., Arnaldsson, A., Manthe, U., Jonsson, H.: Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate. Journal of Physical Chemistry A. 113, 4468-4478 (2009).
Andersson, Stefan, Nyman, Gunnar, Arnaldsson, Andri, Manthe, Uwe, and Jonsson, Hannes. “Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate”. Journal of Physical Chemistry A 113.16 (2009): 4468-4478.

56 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Perspective: Ring-polymer instanton theory.
Richardson JO., J Chem Phys 148(20), 2018
PMID: 29865828
Ab initio instanton rate theory made efficient using Gaussian process regression.
Laude G, Calderini D, Tew DP, Richardson JO., Faraday Discuss 212(0), 2018
PMID: 30230495
Rate constants from instanton theory via a microcanonical approach.
McConnell SR, Löhle A, Kästner J., J Chem Phys 146(7), 2017
PMID: 28228015
Comparison of classical reaction paths and tunneling paths studied with the semiclassical instanton theory.
Meisner J, Markmeyer MN, Bohner MU, Kästner J., Phys Chem Chem Phys 19(34), 2017
PMID: 28820192
Instanton rate constant calculations close to and above the crossover temperature.
McConnell S, Kästner J., J Comput Chem 38(30), 2017
PMID: 28833260
Kinetic isotope effects and how to describe them.
Karandashev K, Xu ZH, Meuwly M, Vaníček J, Richardson JO., Struct Dyn 4(6), 2017
PMID: 29282447
Derivation of instanton rate theory from first principles.
Richardson JO., J Chem Phys 144(11), 2016
PMID: 27004861
Atom Tunneling in Chemistry.
Meisner J, Kästner J., Angew Chem Int Ed Engl 55(18), 2016
PMID: 26990917
Reaction rates and kinetic isotope effects of H2 + OH → H2O + H.
Meisner J, Kästner J., J Chem Phys 144(17), 2016
PMID: 27155636
Quantum tunneling during interstellar surface-catalyzed formation of water: the reaction H + H2O2 → H2O + OH.
Lamberts T, Samanta PK, Köhn A, Kästner J., Phys Chem Chem Phys 18(48), 2016
PMID: 27886292
Significant quantum effects in hydrogen activation.
Kyriakou G, Davidson ER, Peng G, Roling LT, Singh S, Boucher MB, Marcinkowski MD, Mavrikakis M, Michaelides A, Sykes EC., ACS Nano 8(5), 2014
PMID: 24684530
Challenges in modelling the reaction chemistry of interstellar dust.
Bromley ST, Goumans TP, Herbst E, Jones AP, Slater B., Phys Chem Chem Phys 16(35), 2014
PMID: 24937663
Shallow-tunnelling correction factor for use with Wigner-Eyring transition-state theory.
Zhang Y, Rommel JB, Cvitaš MT, Althorpe SC., Phys Chem Chem Phys 16(44), 2014
PMID: 25298025
Quantum Effects in the Diffusion of Hydrogen on Ru(0001).
McIntosh EM, Wikfeldt KT, Ellis J, Michaelides A, Allison W., J Phys Chem Lett 4(9), 2013
PMID: 24920996
On the uniqueness of t → 0+ quantum transition-state theory.
Hele TJ, Althorpe SC., J Chem Phys 139(8), 2013
PMID: 24006983
A method for finding the ridge between saddle points applied to rare event rate estimates.
Maronsson JB, Jónsson H, Vegge T., Phys Chem Chem Phys 14(8), 2012
PMID: 22262088
Long-timescale simulations of diffusion in molecular solids.
Karssemeijer LJ, Pedersen A, Jónsson H, Cuppen HM., Phys Chem Chem Phys 14(31), 2012
PMID: 22781964
Semiclassical evaluation of kinetic isotope effects in 13-atomic system.
Kryvohuz M, Marcus RA., J Chem Phys 137(13), 2012
PMID: 23039585
Bimolecular reaction rates from ring polymer molecular dynamics: application to H + CH4 → H2 + CH3.
Suleimanov YV, Collepardo-Guevara R, Manolopoulos DE., J Chem Phys 134(4), 2011
PMID: 21280711
Simulation of surface processes.
Jónsson H., Proc Natl Acad Sci U S A 108(3), 2011
PMID: 21199939
Ring-polymer instanton method for calculating tunneling splittings.
Richardson JO, Althorpe SC., J Chem Phys 134(5), 2011
PMID: 21303094
Ab initio potential energy surface and quantum dynamics for the H + CH4 → H2 + CH3 reaction.
Zhou Y, Fu B, Wang C, Collins MA, Zhang DH., J Chem Phys 134(6), 2011
PMID: 21322696
High-dimensional ab initio potential energy surfaces for reaction dynamics calculations.
Bowman JM, Czakó G, Fu B., Phys Chem Chem Phys 13(18), 2011
PMID: 21399779
Instanton calculations of tunneling splittings for water dimer and trimer.
Richardson JO, Althorpe SC, Wales DJ., J Chem Phys 135(12), 2011
PMID: 21974514
Kinetic isotope effects calculated with the instanton method.
Meisner J, Rommel JB, Kästner J., J Comput Chem 32(16), 2011
PMID: 21898468
Deuterium enrichment of interstellar methanol explained by atom tunneling.
Goumans TP, Kästner J., J Phys Chem A 115(39), 2011
PMID: 21866902
Hydrogen-atom tunneling could contribute to H2 formation in space.
Goumans TP, Kästner J., Angew Chem Int Ed Engl 49(40), 2010
PMID: 20680952
The hydrogen abstraction reaction H + CH4. II. Theoretical investigation of the kinetics and dynamics.
Espinosa-García J, Nyman G, Corchado JC., J Chem Phys 130(18), 2009
PMID: 19449929
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19275158
PubMed | Europe PMC

Suchen in

Google Scholar