Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate
Andersson S, Nyman G, Arnaldsson A, Manthe U, Jonsson H (2009)
Journal of Physical Chemistry A 113(16): 4468-4478.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Andersson, Stefan;
Nyman, Gunnar;
Arnaldsson, Andri;
Manthe, UweUniBi;
Jonsson, Hannes
Einrichtung
Abstract / Bemerkung
Thermal rate constants are calculated for the H + CH4 -> CH3 + H-2 reaction employing the potential energy surface of Espinosa-Garcia (Espinosa-Garcia, J. J. Chem. Phys. 2002, 116, 10664). Two theoretical approaches are used. First, we employ the multiconfigurational time-dependent Hartree method combined with flux correlation functions. In this way rate constants in the range 225-400 K are obtained and compared with previous results using the same theoretical method but the potential energy surface of Wu et al. (Wu, T.; Werner, H.-J.; Manthe, U. Science 2004, 306, 2227). It is found that the Espinosa-Garcia surface results in larger rate constants. Second, a harmonic quantum transition state theory (HQTST) implementation of instanton theory is used to obtain rate constants in a temperature interval from 20 K up to the crossover temperature at 296 K. The HQTST estimates are larger than MCTDH ones by a factor of about three in the common temperature range. Comparison is also made with various tunneling corrections to transition state theory and quantum instanton theory.
Stichworte
MULTIDIMENSIONAL TUNNELING CONTRIBUTIONS THERMAL RATE CONSTANTS EXTENDED TEMPERATURE INTERVAL HYDROGEN ABSTRACTION REACTION DEPENDENT HARTREE APPROACH FINDING SADDLE-POINTS ROTOR TARGET MODEL REDUCED-DIMENSIONALITY CHEMICAL-REACTIONS REACTIVE SCATTERING
Erscheinungsjahr
2009
Zeitschriftentitel
Journal of Physical Chemistry A
Band
113
Ausgabe
16
Seite(n)
4468-4478
ISSN
1089-5639
eISSN
1520-5215
Page URI
https://pub.uni-bielefeld.de/record/1896999
Zitieren
Andersson S, Nyman G, Arnaldsson A, Manthe U, Jonsson H. Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate. Journal of Physical Chemistry A. 2009;113(16):4468-4478.
Andersson, S., Nyman, G., Arnaldsson, A., Manthe, U., & Jonsson, H. (2009). Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate. Journal of Physical Chemistry A, 113(16), 4468-4478. https://doi.org/10.1021/jp811070w
Andersson, Stefan, Nyman, Gunnar, Arnaldsson, Andri, Manthe, Uwe, and Jonsson, Hannes. 2009. “Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate”. Journal of Physical Chemistry A 113 (16): 4468-4478.
Andersson, S., Nyman, G., Arnaldsson, A., Manthe, U., and Jonsson, H. (2009). Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate. Journal of Physical Chemistry A 113, 4468-4478.
Andersson, S., et al., 2009. Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate. Journal of Physical Chemistry A, 113(16), p 4468-4478.
S. Andersson, et al., “Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate”, Journal of Physical Chemistry A, vol. 113, 2009, pp. 4468-4478.
Andersson, S., Nyman, G., Arnaldsson, A., Manthe, U., Jonsson, H.: Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate. Journal of Physical Chemistry A. 113, 4468-4478 (2009).
Andersson, Stefan, Nyman, Gunnar, Arnaldsson, Andri, Manthe, Uwe, and Jonsson, Hannes. “Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate”. Journal of Physical Chemistry A 113.16 (2009): 4468-4478.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
56 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Perspective: Ring-polymer instanton theory.
Richardson JO., J Chem Phys 148(20), 2018
PMID: 29865828
Richardson JO., J Chem Phys 148(20), 2018
PMID: 29865828
Mean-field Matsubara dynamics: Analysis of path-integral curvature effects in rovibrational spectra.
Trenins G, Althorpe SC., J Chem Phys 149(1), 2018
PMID: 29981546
Trenins G, Althorpe SC., J Chem Phys 149(1), 2018
PMID: 29981546
Ab initio instanton rate theory made efficient using Gaussian process regression.
Laude G, Calderini D, Tew DP, Richardson JO., Faraday Discuss 212(0), 2018
PMID: 30230495
Laude G, Calderini D, Tew DP, Richardson JO., Faraday Discuss 212(0), 2018
PMID: 30230495
Full- and reduced-dimensionality instanton calculations of the tunnelling splitting in the formic acid dimer.
Richardson JO., Phys Chem Chem Phys 19(2), 2017
PMID: 27965992
Richardson JO., Phys Chem Chem Phys 19(2), 2017
PMID: 27965992
Rate constants from instanton theory via a microcanonical approach.
McConnell SR, Löhle A, Kästner J., J Chem Phys 146(7), 2017
PMID: 28228015
McConnell SR, Löhle A, Kästner J., J Chem Phys 146(7), 2017
PMID: 28228015
Wavepacket dynamics and the multi-configurational time-dependent Hartree approach.
Manthe U., J Phys Condens Matter 29(25), 2017
PMID: 28430111
Manthe U., J Phys Condens Matter 29(25), 2017
PMID: 28430111
Comparison of classical reaction paths and tunneling paths studied with the semiclassical instanton theory.
Meisner J, Markmeyer MN, Bohner MU, Kästner J., Phys Chem Chem Phys 19(34), 2017
PMID: 28820192
Meisner J, Markmeyer MN, Bohner MU, Kästner J., Phys Chem Chem Phys 19(34), 2017
PMID: 28820192
Instanton rate constant calculations close to and above the crossover temperature.
McConnell S, Kästner J., J Comput Chem 38(30), 2017
PMID: 28833260
McConnell S, Kästner J., J Comput Chem 38(30), 2017
PMID: 28833260
Kinetic isotope effects and how to describe them.
Karandashev K, Xu ZH, Meuwly M, Vaníček J, Richardson JO., Struct Dyn 4(6), 2017
PMID: 29282447
Karandashev K, Xu ZH, Meuwly M, Vaníček J, Richardson JO., Struct Dyn 4(6), 2017
PMID: 29282447
Derivation of instanton rate theory from first principles.
Richardson JO., J Chem Phys 144(11), 2016
PMID: 27004861
Richardson JO., J Chem Phys 144(11), 2016
PMID: 27004861
Atom Tunneling in Chemistry.
Meisner J, Kästner J., Angew Chem Int Ed Engl 55(18), 2016
PMID: 26990917
Meisner J, Kästner J., Angew Chem Int Ed Engl 55(18), 2016
PMID: 26990917
Reaction rates and kinetic isotope effects of H2 + OH → H2O + H.
Meisner J, Kästner J., J Chem Phys 144(17), 2016
PMID: 27155636
Meisner J, Kästner J., J Chem Phys 144(17), 2016
PMID: 27155636
S-matrix decomposition, natural reaction channels, and the quantum transition state approach to reactive scattering.
Manthe U, Ellerbrock R., J Chem Phys 144(20), 2016
PMID: 27250291
Manthe U, Ellerbrock R., J Chem Phys 144(20), 2016
PMID: 27250291
Formation of the prebiotic molecule NH2CHO on astronomical amorphous solid water surfaces: accurate tunneling rate calculations.
Song L, Kästner J., Phys Chem Chem Phys 18(42), 2016
PMID: 27731439
Song L, Kästner J., Phys Chem Chem Phys 18(42), 2016
PMID: 27731439
Microcanonical and thermal instanton rate theory for chemical reactions at all temperatures.
Richardson JO., Faraday Discuss 195(), 2016
PMID: 27731475
Richardson JO., Faraday Discuss 195(), 2016
PMID: 27731475
Quantum tunneling during interstellar surface-catalyzed formation of water: the reaction H + H2O2 → H2O + OH.
Lamberts T, Samanta PK, Köhn A, Kästner J., Phys Chem Chem Phys 18(48), 2016
PMID: 27886292
Lamberts T, Samanta PK, Köhn A, Kästner J., Phys Chem Chem Phys 18(48), 2016
PMID: 27886292
A permutationally invariant full-dimensional ab initio potential energy surface for the abstraction and exchange channels of the H + CH4 system.
Li J, Chen J, Zhao Z, Xie D, Zhang DH, Guo H., J Chem Phys 142(20), 2015
PMID: 26026442
Li J, Chen J, Zhao Z, Xie D, Zhang DH, Guo H., J Chem Phys 142(20), 2015
PMID: 26026442
Should thermostatted ring polymer molecular dynamics be used to calculate thermal reaction rates?
Hele TJ, Suleimanov YV., J Chem Phys 143(7), 2015
PMID: 26298115
Hele TJ, Suleimanov YV., J Chem Phys 143(7), 2015
PMID: 26298115
Semiclassical Green's functions and an instanton formulation of electron-transfer rates in the nonadiabatic limit.
Richardson JO, Bauer R, Thoss M., J Chem Phys 143(13), 2015
PMID: 26450300
Richardson JO, Bauer R, Thoss M., J Chem Phys 143(13), 2015
PMID: 26450300
Ring-polymer instanton theory of electron transfer in the nonadiabatic limit.
Richardson JO., J Chem Phys 143(13), 2015
PMID: 26450301
Richardson JO., J Chem Phys 143(13), 2015
PMID: 26450301
Mode specific dynamics of the H2 + CH3 → H + CH4 reaction studied using quasi-classical trajectory and eight-dimensional quantum dynamics methods.
Wang Y, Li J, Chen L, Lu Y, Yang M, Guo H., J Chem Phys 143(15), 2015
PMID: 26493907
Wang Y, Li J, Chen L, Lu Y, Yang M, Guo H., J Chem Phys 143(15), 2015
PMID: 26493907
Significant quantum effects in hydrogen activation.
Kyriakou G, Davidson ER, Peng G, Roling LT, Singh S, Boucher MB, Marcinkowski MD, Mavrikakis M, Michaelides A, Sykes EC., ACS Nano 8(5), 2014
PMID: 24684530
Kyriakou G, Davidson ER, Peng G, Roling LT, Singh S, Boucher MB, Marcinkowski MD, Mavrikakis M, Michaelides A, Sykes EC., ACS Nano 8(5), 2014
PMID: 24684530
Efficient algorithms for semiclassical instanton calculations based on discretized path integrals.
Kawatsu T, Miura S., J Chem Phys 141(2), 2014
PMID: 25027993
Kawatsu T, Miura S., J Chem Phys 141(2), 2014
PMID: 25027993
Challenges in modelling the reaction chemistry of interstellar dust.
Bromley ST, Goumans TP, Herbst E, Jones AP, Slater B., Phys Chem Chem Phys 16(35), 2014
PMID: 24937663
Bromley ST, Goumans TP, Herbst E, Jones AP, Slater B., Phys Chem Chem Phys 16(35), 2014
PMID: 24937663
Shallow-tunnelling correction factor for use with Wigner-Eyring transition-state theory.
Zhang Y, Rommel JB, Cvitaš MT, Althorpe SC., Phys Chem Chem Phys 16(44), 2014
PMID: 25298025
Zhang Y, Rommel JB, Cvitaš MT, Althorpe SC., Phys Chem Chem Phys 16(44), 2014
PMID: 25298025
Eight-dimensional quantum reaction rate calculations for the H+CH4 and H2+CH3 reactions on recent potential energy surfaces.
Zhou Y, Zhang DH., J Chem Phys 141(19), 2014
PMID: 25416891
Zhou Y, Zhang DH., J Chem Phys 141(19), 2014
PMID: 25416891
Derivation of a true (t → 0+) quantum transition-state theory. I. Uniqueness and equivalence to ring-polymer molecular dynamics transition-state-theory.
Hele TJ, Althorpe SC., J Chem Phys 138(8), 2013
PMID: 23464141
Hele TJ, Althorpe SC., J Chem Phys 138(8), 2013
PMID: 23464141
Rate coefficients and kinetic isotope effects of the X + CH4 → CH3 + HX (X = H, D, Mu) reactions from ring polymer molecular dynamics.
Li Y, Suleimanov YV, Li J, Green WH, Guo H., J Chem Phys 138(9), 2013
PMID: 23485294
Li Y, Suleimanov YV, Li J, Green WH, Guo H., J Chem Phys 138(9), 2013
PMID: 23485294
Fast Shepard interpolation on graphics processing units: potential energy surfaces and dynamics for H + CH4 → H2 + CH3.
Welsch R, Manthe U., J Chem Phys 138(16), 2013
PMID: 23635122
Welsch R, Manthe U., J Chem Phys 138(16), 2013
PMID: 23635122
Quantum Effects in the Diffusion of Hydrogen on Ru(0001).
McIntosh EM, Wikfeldt KT, Ellis J, Michaelides A, Allison W., J Phys Chem Lett 4(9), 2013
PMID: 24920996
McIntosh EM, Wikfeldt KT, Ellis J, Michaelides A, Allison W., J Phys Chem Lett 4(9), 2013
PMID: 24920996
Path length determines the tunneling decay of substituted carbenes.
Kästner J., Chemistry 19(25), 2013
PMID: 23609956
Kästner J., Chemistry 19(25), 2013
PMID: 23609956
On the derivation of semiclassical expressions for quantum reaction rate constants in multidimensional systems.
Kryvohuz M., J Chem Phys 138(24), 2013
PMID: 23822234
Kryvohuz M., J Chem Phys 138(24), 2013
PMID: 23822234
Derivation of a true (t → 0+) quantum transition-state theory. II. Recovery of the exact quantum rate in the absence of recrossing.
Althorpe SC, Hele TJ., J Chem Phys 139(8), 2013
PMID: 24006982
Althorpe SC, Hele TJ., J Chem Phys 139(8), 2013
PMID: 24006982
On the uniqueness of t → 0+ quantum transition-state theory.
Hele TJ, Althorpe SC., J Chem Phys 139(8), 2013
PMID: 24006983
Hele TJ, Althorpe SC., J Chem Phys 139(8), 2013
PMID: 24006983
A method for finding the ridge between saddle points applied to rare event rate estimates.
Maronsson JB, Jónsson H, Vegge T., Phys Chem Chem Phys 14(8), 2012
PMID: 22262088
Maronsson JB, Jónsson H, Vegge T., Phys Chem Chem Phys 14(8), 2012
PMID: 22262088
A full-dimensional wave packet dynamics study of the photodetachment spectra of FCH4(-).
Palma J, Manthe U., J Chem Phys 137(4), 2012
PMID: 22852617
Palma J, Manthe U., J Chem Phys 137(4), 2012
PMID: 22852617
Long-timescale simulations of diffusion in molecular solids.
Karssemeijer LJ, Pedersen A, Jónsson H, Cuppen HM., Phys Chem Chem Phys 14(31), 2012
PMID: 22781964
Karssemeijer LJ, Pedersen A, Jónsson H, Cuppen HM., Phys Chem Chem Phys 14(31), 2012
PMID: 22781964
Semiclassical evaluation of kinetic isotope effects in 13-atomic system.
Kryvohuz M, Marcus RA., J Chem Phys 137(13), 2012
PMID: 23039585
Kryvohuz M, Marcus RA., J Chem Phys 137(13), 2012
PMID: 23039585
Calculation of chemical reaction rate constants using on-the-fly high level electronic structure computations with account of multidimensional tunneling.
Kryvohuz M., J Chem Phys 137(23), 2012
PMID: 23267483
Kryvohuz M., J Chem Phys 137(23), 2012
PMID: 23267483
Reaction dynamics with the multi-layer multi-configurational time-dependent Hartree approach: H + CH4 → H2 + CH3 rate constants for different potentials.
Welsch R, Manthe U., J Chem Phys 137(24), 2012
PMID: 23277927
Welsch R, Manthe U., J Chem Phys 137(24), 2012
PMID: 23277927
Bimolecular reaction rates from ring polymer molecular dynamics: application to H + CH4 → H2 + CH3.
Suleimanov YV, Collepardo-Guevara R, Manolopoulos DE., J Chem Phys 134(4), 2011
PMID: 21280711
Suleimanov YV, Collepardo-Guevara R, Manolopoulos DE., J Chem Phys 134(4), 2011
PMID: 21280711
Ring-polymer instanton method for calculating tunneling splittings.
Richardson JO, Althorpe SC., J Chem Phys 134(5), 2011
PMID: 21303094
Richardson JO, Althorpe SC., J Chem Phys 134(5), 2011
PMID: 21303094
Ab initio potential energy surface and quantum dynamics for the H + CH4 → H2 + CH3 reaction.
Zhou Y, Fu B, Wang C, Collins MA, Zhang DH., J Chem Phys 134(6), 2011
PMID: 21322696
Zhou Y, Fu B, Wang C, Collins MA, Zhang DH., J Chem Phys 134(6), 2011
PMID: 21322696
Semiclassical instanton approach to calculation of reaction rate constants in multidimensional chemical systems.
Kryvohuz M., J Chem Phys 134(11), 2011
PMID: 21428603
Kryvohuz M., J Chem Phys 134(11), 2011
PMID: 21428603
On the equivalence of two commonly used forms of semiclassical instanton theory.
Althorpe SC., J Chem Phys 134(11), 2011
PMID: 21428604
Althorpe SC., J Chem Phys 134(11), 2011
PMID: 21428604
High-dimensional ab initio potential energy surfaces for reaction dynamics calculations.
Bowman JM, Czakó G, Fu B., Phys Chem Chem Phys 13(18), 2011
PMID: 21399779
Bowman JM, Czakó G, Fu B., Phys Chem Chem Phys 13(18), 2011
PMID: 21399779
Adaptive integration grids in instanton theory improve the numerical accuracy at low temperature.
Rommel JB, Kästner J., J Chem Phys 134(18), 2011
PMID: 21568497
Rommel JB, Kästner J., J Chem Phys 134(18), 2011
PMID: 21568497
Effects of reagent vibrational excitation on the dynamics of the H + CHD3 → H2 + CD3 reaction: a seven-dimensional time-dependent wave packet study.
Zhou Y, Wang C, Zhang DH., J Chem Phys 135(2), 2011
PMID: 21766948
Zhou Y, Wang C, Zhang DH., J Chem Phys 135(2), 2011
PMID: 21766948
Instanton calculations of tunneling splittings for water dimer and trimer.
Richardson JO, Althorpe SC, Wales DJ., J Chem Phys 135(12), 2011
PMID: 21974514
Richardson JO, Althorpe SC, Wales DJ., J Chem Phys 135(12), 2011
PMID: 21974514
Kinetic isotope effects calculated with the instanton method.
Meisner J, Rommel JB, Kästner J., J Comput Chem 32(16), 2011
PMID: 21898468
Meisner J, Rommel JB, Kästner J., J Comput Chem 32(16), 2011
PMID: 21898468
Deuterium enrichment of interstellar methanol explained by atom tunneling.
Goumans TP, Kästner J., J Phys Chem A 115(39), 2011
PMID: 21866902
Goumans TP, Kästner J., J Phys Chem A 115(39), 2011
PMID: 21866902
Quantum dynamics of the H+CH4-->H2+CH3 reaction in curvilinear coordinates: full-dimensional and reduced dimensional calculations of reaction rates.
Schiffel G, Manthe U., J Chem Phys 132(8), 2010
PMID: 20192286
Schiffel G, Manthe U., J Chem Phys 132(8), 2010
PMID: 20192286
Hydrogen-atom tunneling could contribute to H2 formation in space.
Goumans TP, Kästner J., Angew Chem Int Ed Engl 49(40), 2010
PMID: 20680952
Goumans TP, Kästner J., Angew Chem Int Ed Engl 49(40), 2010
PMID: 20680952
A transition state view on reactive scattering: initial state-selected reaction probabilities for the H + CH4 → H2 + CH3 reaction studied in full dimensionality.
Schiffel G, Manthe U., J Chem Phys 133(17), 2010
PMID: 21054023
Schiffel G, Manthe U., J Chem Phys 133(17), 2010
PMID: 21054023
The hydrogen abstraction reaction H + CH4. II. Theoretical investigation of the kinetics and dynamics.
Espinosa-García J, Nyman G, Corchado JC., J Chem Phys 130(18), 2009
PMID: 19449929
Espinosa-García J, Nyman G, Corchado JC., J Chem Phys 130(18), 2009
PMID: 19449929
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 19275158
PubMed | Europe PMC
Suchen in