Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum

Youn J-W, Jolkver E, Kramer R, Marin K, Wendisch VF (2008)
Journal of Bacteriology 190(19): 6458-6466.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Youn, Jung-WonUniBi; Jolkver, E.; Kramer, R.; Marin, K.; Wendisch, Volker F.UniBi
Abstract / Bemerkung
Many bacteria can utilize C-4-carboxylates as carbon and energy sources. However, Corynebacterium glutamicum ATCC 13032 is not able to use tricarboxylic acid cycle intermediates such as succinate, fumarate, and L-malate as sole carbon sources. Upon prolonged incubation, spontaneous mutants which had gained the ability to grow on succinate, fumarate, and L-malate could be isolated. DNA microarray analysis showed higher mRNA levels of cg0277, which subsequently was named dccT, in the mutants than in the wild type, and transcriptional fusion analysis revealed that a point mutation in the promoter region of dccT was responsible for increased expression. The overexpression of dccT was sufficient to enable the C. glutamicum wild type to grow on succinate, fumarate, and L-malate as the sole carbon sources. Biochemical analyses revealed that DccT, which is a member of the divalent anion/Na+ symporter family, catalyzes the effective uptake of dicarboxylates like succinate, fumarate, L-malate, and likely also oxaloacetate in a sodium-dependent manner.
Stichworte
biochemical-characterization; transport-system; phosphoenolpyruvate carboxylase; pyruvate-carboxylase; escherichia-coli; bacillus-subtilis; homologous proteins; carrier protein; sequence-analysis; staphylococcus-aureus
Erscheinungsjahr
2008
Zeitschriftentitel
Journal of Bacteriology
Band
190
Ausgabe
19
Seite(n)
6458-6466
ISSN
0021-9193
Page URI
https://pub.uni-bielefeld.de/record/1895401

Zitieren

Youn J-W, Jolkver E, Kramer R, Marin K, Wendisch VF. Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum. Journal of Bacteriology. 2008;190(19):6458-6466.
Youn, J. - W., Jolkver, E., Kramer, R., Marin, K., & Wendisch, V. F. (2008). Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum. Journal of Bacteriology, 190(19), 6458-6466. https://doi.org/10.1128/Jb.00780-08
Youn, Jung-Won, Jolkver, E., Kramer, R., Marin, K., and Wendisch, Volker F. 2008. “Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum”. Journal of Bacteriology 190 (19): 6458-6466.
Youn, J. - W., Jolkver, E., Kramer, R., Marin, K., and Wendisch, V. F. (2008). Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum. Journal of Bacteriology 190, 6458-6466.
Youn, J.-W., et al., 2008. Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum. Journal of Bacteriology, 190(19), p 6458-6466.
J.-W. Youn, et al., “Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum”, Journal of Bacteriology, vol. 190, 2008, pp. 6458-6466.
Youn, J.-W., Jolkver, E., Kramer, R., Marin, K., Wendisch, V.F.: Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum. Journal of Bacteriology. 190, 6458-6466 (2008).
Youn, Jung-Won, Jolkver, E., Kramer, R., Marin, K., and Wendisch, Volker F. “Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum”. Journal of Bacteriology 190.19 (2008): 6458-6466.

41 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Efficient Production of the Dicarboxylic Acid Glutarate by Corynebacterium glutamicum via a Novel Synthetic Pathway.
Pérez-García F, Jorge JMP, Dreyszas A, Risse JM, Wendisch VF., Front Microbiol 9(), 2018
PMID: 30425699
Metabolic profile of 1,5-diaminopentane producing Corynebacterium glutamicum under scale-down conditions: Blueprint for robustness to bioreactor inhomogeneities.
Limberg MH, Schulte J, Aryani T, Mahr R, Baumgart M, Bott M, Wiechert W, Oldiges M., Biotechnol Bioeng 114(3), 2017
PMID: 27641904
Adipic acid tolerance screening for potential adipic acid production hosts.
Karlsson E, Mapelli V, Olsson L., Microb Cell Fact 16(1), 2017
PMID: 28143563
Structure and function of the divalent anion/Na+ symporter from Vibrio cholerae and a humanized variant.
Nie R, Stark S, Symersky J, Kaplan RS, Lu M., Nat Commun 8(), 2017
PMID: 28436435
pH fluctuations imperil the robustness of C. glutamicum to short term oxygen limitation.
Limberg MH, Joachim M, Klein B, Wiechert W, Oldiges M., J Biotechnol 259(), 2017
PMID: 28837821
Anaerobic growth of Corynebacterium glutamicum via mixed-acid fermentation.
Michel A, Koch-Koerfges A, Krumbach K, Brocker M, Bott M., Appl Environ Microbiol 81(21), 2015
PMID: 26276118
Mechanism of Na(+)-dependent citrate transport from the structure of an asymmetrical CitS dimer.
Wöhlert D, Grötzinger MJ, Kühlbrandt W, Yildiz Ö., Elife 4(), 2015
PMID: 26636752
Metabolic engineering of Corynebacterium glutamicum for glycolate production.
Zahoor A, Otten A, Wendisch VF., J Biotechnol 192 Pt B(), 2014
PMID: 24486442
Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Krämer R, Wendisch VF, Seibold GM., Appl Microbiol Biotechnol 98(12), 2014
PMID: 24668244
A Na+-coupled C4-dicarboxylate transporter (Asuc_0304) and aerobic growth of Actinobacillus succinogenes on C4-dicarboxylates.
Rhie MN, Yoon HE, Oh HY, Zedler S, Unden G, Kim OB., Microbiology 160(pt 7), 2014
PMID: 24742960
Functional characterization of a Na+-dependent dicarboxylate transporter from Vibrio cholerae.
Mulligan C, Fitzgerald GA, Wang DN, Mindell JA., J Gen Physiol 143(6), 2014
PMID: 24821967
Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum.
Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Krämer R, Wendisch VF, Seibold GM, Marin K., Appl Microbiol Biotechnol 97(4), 2013
PMID: 22854894
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2013
PMID: 23164409
Corynebacterium glutamicum promoters: a practical approach.
Pátek M, Holátko J, Busche T, Kalinowski J, Nešvera J., Microb Biotechnol 6(2), 2013
PMID: 23305350
Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum.
Litsanov B, Kabus A, Brocker M, Bott M., Microb Biotechnol 5(1), 2012
PMID: 22018023
MhbT is a specific transporter for 3-hydroxybenzoate uptake by Gram-negative bacteria.
Xu Y, Gao X, Wang SH, Liu H, Williams PA, Zhou NY., Appl Environ Microbiol 78(17), 2012
PMID: 22729544
Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Wendisch VF., BMC Microbiol 12(), 2012
PMID: 22963379
Sialic acid utilization by the soil bacterium Corynebacterium glutamicum.
Gruteser N, Marin K, Krämer R, Thomas GH., FEMS Microbiol Lett 336(2), 2012
PMID: 22924979
Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter.
Mancusso R, Gregorio GG, Liu Q, Wang DN., Nature 491(7425), 2012
PMID: 23086149
Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products.
Zahoor A, Lindner SN, Wendisch VF., Comput Struct Biotechnol J 3(), 2012
PMID: 24688664
Identification of the membrane protein SucE and its role in succinate transport in Corynebacterium glutamicum.
Huhn S, Jolkver E, Krämer R, Marin K., Appl Microbiol Biotechnol 89(2), 2011
PMID: 20809072
Tools for genetic manipulations in Corynebacterium glutamicum and their applications.
Nešvera J, Pátek M., Appl Microbiol Biotechnol 90(5), 2011
PMID: 21519933
Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM., Appl Microbiol Biotechnol 92(5), 2011
PMID: 21796382
Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum.
Youn JW, Jolkver E, Krämer R, Marin K, Wendisch VF., J Bacteriol 191(17), 2009
PMID: 19581365
Functional characterization of a Na(+)-coupled dicarboxylate transporter from Bacillus licheniformis.
Strickler MA, Hall JA, Gaiko O, Pajor AM., Biochim Biophys Acta 1788(12), 2009
PMID: 19840771

65 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 2007

AUTHOR UNKNOWN, 2008
Regulation of the transport system for C4-dicarboxylic acids in Bacillus subtilis.
Asai K, Baik SH, Kasahara Y, Moriya S, Ogasawara N., Microbiology (Reading, Engl.) 146 ( Pt 2)(), 2000
PMID: 10708364
Secondary transporters for citrate and the Mg(2+)-citrate complex in Bacillus subtilis are homologous proteins.
Boorsma A, van der Rest ME, Lolkema JS, Konings WN., J. Bacteriol. 178(21), 1996
PMID: 8892821
Genome-wide investigation of aromatic acid transporters in Corynebacterium glutamicum.
Chaudhry MT, Huang Y, Shen XH, Poetsch A, Jiang CY, Liu SJ., Microbiology (Reading, Engl.) 153(Pt 3), 2007
PMID: 17322206

AUTHOR UNKNOWN, 1993
Inactivation and regulation of the aerobic C(4)-dicarboxylate transport (dctA) gene of Escherichia coli.
Davies SJ, Golby P, Omrani D, Broad SA, Harrington VL, Guest JR, Kelly DJ, Andrews SC., J. Bacteriol. 181(18), 1999
PMID: 10482502
Na(+)-dependent succinate uptake in Corynebacterium glutamicum.
Ebbighausen H, Weil B, Kramer R., FEMS Microbiol. Lett. 61(1), 1991
PMID: 2004698

AUTHOR UNKNOWN, 2005

AUTHOR UNKNOWN, 2005
The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier.
Emmerlich V, Linka N, Reinhold T, Hurth MA, Traub M, Martinoia E, Neuhaus HE., Proc. Natl. Acad. Sci. U.S.A. 100(19), 2003
PMID: 12947042
Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions.
Inui M, Murakami S, Okino S, Kawaguchi H, Vertes AA, Yukawa H., J. Mol. Microbiol. Biotechnol. 7(4), 2004
PMID: 15383716
C4-dicarboxylate carriers and sensors in bacteria.
Janausch IG, Zientz E, Tran QH, Kroger A, Unden G., Biochim. Biophys. Acta 1553(1-2), 2002
PMID: 11803016
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Uptake of glutamate in Corynebacterium glutamicum. 1. Kinetic properties and regulation by internal pH and potassium.
Kramer R, Lambert C, Hoischen C, Ebbighausen H., Eur. J. Biochem. 194(3), 1990
PMID: 1980106
Vanillate metabolism in Corynebacterium glutamicum.
Merkens H, Beckers G, Wirtz A, Burkovski A., Curr. Microbiol. 51(1), 2005
PMID: 15971090

AUTHOR UNKNOWN, 1986

AUTHOR UNKNOWN, 2008
Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis.
Netzer R, Krause M, Rittmann D, Peters-Wendisch PG, Eggeling L, Wendisch VF, Sahm H., Arch. Microbiol. 182(5), 2004
PMID: 15375646
Cometabolism of a nongrowth substrate: L-serine utilization by Corynebacterium glutamicum.
Netzer R, Peters-Wendisch P, Eggeling L, Sahm H., Appl. Environ. Microbiol. 70(12), 2004
PMID: 15574911
Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor.
Nishimura T, Vertes AA, Shinoda Y, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 75(4), 2007
PMID: 17347820

AUTHOR UNKNOWN, 2005
Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene.
Peters-Wendisch PG, Kreutzer C, Kalinowski J, Patek M, Sahm H, Eikmanns BJ., Microbiology (Reading, Engl.) 144 ( Pt 4)(), 1998
PMID: 9579065
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586

AUTHOR UNKNOWN, 1997
Characterization of citrate utilization in Corynebacterium glutamicum by transcriptome and proteome analysis.
Polen T, Schluesener D, Poetsch A, Bott M, Wendisch VF., FEMS Microbiol. Lett. 273(1), 2007
PMID: 17559405
The ion transporter superfamily.
Prakash S, Cooper G, Singhi S, Saier MH Jr., Biochim. Biophys. Acta 1618(1), 2003
PMID: 14643936
Malate synthase from Corynebacterium glutamicum: sequence analysis of the gene and biochemical characterization of the enzyme.
Reinscheid DJ, Eikmanns BJ, Sahm H., Microbiology (Reading, Engl.) 140 ( Pt 11)(), 1994
PMID: 7812449
Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production.
Riedel C, Rittmann D, Dangel P, Mockel B, Petersen S, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(4), 2001
PMID: 11565516

AUTHOR UNKNOWN, 2001

AUTHOR UNKNOWN, 2007

AUTHOR UNKNOWN, 1998
Growth of Bacillus subtilis on citrate and isocitrate is supported by the Mg2+-citrate transporter CitM.
Warner JB, Lolkema JS., Microbiology (Reading, Engl.) 148(Pt 11), 2002
PMID: 12427932

AUTHOR UNKNOWN, 2006

AUTHOR UNKNOWN, 2005

AUTHOR UNKNOWN, 2007
Structure of a glutamate transporter homologue from Pyrococcus horikoshii.
Yernool D, Boudker O, Jin Y, Gouaux E., Nature 431(7010), 2004
PMID: 15483603
New substrates for the dicarboxylate transport system of Sinorhizobium meliloti.
Yurgel S, Mortimer MW, Rogers KN, Kahn ML., J. Bacteriol. 182(15), 2000
PMID: 10894729
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18658264
PubMed | Europe PMC

Suchen in

Google Scholar