Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes

Wendisch VF, Spies M, Reinscheid DJ, Schnicke S, Sahm H, Eikmanns BJ (1997)
Archives of Microbiology 168(4): 262-269.

Zeitschriftenaufsatz | Veröffentlicht| Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor*in
Wendisch, Volker F.UniBi ; Spies, M.; Reinscheid, D. J.; Schnicke, S.; Sahm, H.; Eikmanns, B. J.
Abstract / Bemerkung
In the amino-acid-producing microorganism Corynebacterium glutamicum, the specific activities of the acetate-activating enzymes acetate kinase and phosphotransacetylase and those of the glyoxylate cycle enzymes isocitrate lyase and malate synthase were found to be high when the cells were grown on acetate (0.8, 2.9, 2.1, and 1.8 U/mg protein, respectively). When the cells were grown on glucose or on other carbon sources such as lactate, succinate, or glutamate, the specific activities were two-to fourfold (acetate kinase and phosphotransacetylase) and 45- to 100-fold (isocitrate lyase and malate synthase) lower, indicating that the synthesis of the four enzymes is regulated by acetate in the growth medium. A comparative Northern (RNA) analysis of the C. glutamicum isocitrate lyase and malate synthase genes (aceA and aceB) and transcriptional cat fusion experiments revealed that aceA and aceB are transcribed as 1.6-and 2.7-kb monocistronic messages, respectively, and that the regulation of isocitrate lyase and malate synthase synthesis is exerted at the level of transcription from the respective promoters. Surprisingly, C. glutamicum mutants defective in either acetate kinase or phosphotransacetylase showed low specific activities of the other three enzymes (phosphotransacetylase, isocitrate lyase, and malate synthase or acetate kinase, isocitrate lyase, and malate synthase, respectively) irrespective of the presence or absence of acetate in the medium. This result and a correlation of a high intracellular acetyl coenzyme A concentration with high specific activities of isocitrate lyase, malate synthase, acetate kinase, and phosphotransacetylase suggest that acetyl coenzyme A or a derivative thereof may be a physiological trigger for the genetic regulation of enzymes involved in acetate metabolism of C. glutamicum.
Stichworte
expression; enzyme; phosphotransacetylase; biochemical-characterization; acetyl phosphate; clostridium-acetobutylicum; escherichia-coli; acetyl-coa; acetyl-phosphate; carbon flux; malate synthase; phosphotransacetylase; isocitrate lyase; acetate kinase; corynebacterium glutamicum; glyoxylate; sequence-analysis; acetate metabolism
Erscheinungsjahr
1997
Zeitschriftentitel
Archives of Microbiology
Band
168
Ausgabe
4
Seite(n)
262-269
ISSN
0302-8933
Page URI
https://pub.uni-bielefeld.de/record/1895384

Zitieren

Wendisch VF, Spies M, Reinscheid DJ, Schnicke S, Sahm H, Eikmanns BJ. Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes. Archives of Microbiology. 1997;168(4):262-269.
Wendisch, V. F., Spies, M., Reinscheid, D. J., Schnicke, S., Sahm, H., & Eikmanns, B. J. (1997). Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes. Archives of Microbiology, 168(4), 262-269.
Wendisch, V. F., Spies, M., Reinscheid, D. J., Schnicke, S., Sahm, H., and Eikmanns, B. J. (1997). Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes. Archives of Microbiology 168, 262-269.
Wendisch, V.F., et al., 1997. Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes. Archives of Microbiology, 168(4), p 262-269.
V.F. Wendisch, et al., “Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes”, Archives of Microbiology, vol. 168, 1997, pp. 262-269.
Wendisch, V.F., Spies, M., Reinscheid, D.J., Schnicke, S., Sahm, H., Eikmanns, B.J.: Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes. Archives of Microbiology. 168, 262-269 (1997).
Wendisch, Volker F., Spies, M., Reinscheid, D. J., Schnicke, S., Sahm, H., and Eikmanns, B. J. “Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes”. Archives of Microbiology 168.4 (1997): 262-269.

36 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli.
Yang X, Yuan Q, Zheng Y, Ma H, Chen T, Zhao X., Biotechnol Lett 38(8), 2016
PMID: 27146080
Ionic Liquids Impact the Bioenergy Feedstock-Degrading Microbiome and Transcription of Enzymes Relevant to Polysaccharide Hydrolysis.
Wu YW, Higgins B, Yu C, Reddy AP, Ceballos S, Joh LD, Simmons BA, Singer SW, VanderGheynst JS., mSystems 1(6), 2016
PMID: 27981239
Analysis of the key enzymes of butyric and acetic acid fermentation in biogas reactors.
Gabris C, Bengelsdorf FR, Dürre P., Microb Biotechnol 8(5), 2015
PMID: 26086956
Anaerobic growth of Corynebacterium glutamicum via mixed-acid fermentation.
Michel A, Koch-Koerfges A, Krumbach K, Brocker M, Bott M., Appl Environ Microbiol 81(21), 2015
PMID: 26276118
Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production.
Bückle-Vallant V, Krause FS, Messerschmidt S, Eikmanns BJ., Appl Microbiol Biotechnol 98(1), 2014
PMID: 24169948
Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for L-methionine and branched-chain amino acids.
Lange C, Mustafi N, Frunzke J, Kennerknecht N, Wessel M, Bott M, Wendisch VF., J Biotechnol 158(4), 2012
PMID: 21683740
Proteomic analysis on acetate metabolism in Citrobacter sp. BL-4.
Kim YM, Lee SE, Park BS, Son MK, Jung YM, Yang SO, Choi HK, Hur SH, Yum JH., Int J Biol Sci 8(1), 2012
PMID: 22211106
Carbon flux rerouting during Mycobacterium tuberculosis growth arrest.
Shi L, Sohaskey CD, Pheiffer C, Datta P, Datta P, Parks M, McFadden J, North RJ, Gennaro ML., Mol Microbiol 78(5), 2010
PMID: 21091505
Pathway identification combining metabolic flux and functional genomics analyses: acetate and propionate activation by Corynebacterium glutamicum.
Veit A, Rittmann D, Georgi T, Youn JW, Eikmanns BJ, Wendisch VF., J Biotechnol 140(1-2), 2009
PMID: 19162097
Role of the transcriptional regulator RamB (Rv0465c) in the control of the glyoxylate cycle in Mycobacterium tuberculosis.
Micklinghoff JC, Breitinger KJ, Schmidt M, Geffers R, Eikmanns BJ, Bange FC., J Bacteriol 191(23), 2009
PMID: 19767422
Function and transcriptional regulation of the isocitrate lyase in Pseudomonas aeruginosa.
Kretzschmar U, Khodaverdi V, Jeoung JH, Görisch H., Arch Microbiol 190(2), 2008
PMID: 18574579
Analyses of the acetate-producing pathways in Corynebacterium glutamicum under oxygen-deprived conditions.
Yasuda K, Jojima T, Suda M, Okino S, Inui M, Yukawa H., Appl Microbiol Biotechnol 77(4), 2007
PMID: 17909785
The acetate switch.
Wolfe AJ., Microbiol Mol Biol Rev 69(1), 2005
PMID: 15755952
In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome.
Krömer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C., J Bacteriol 186(6), 2004
PMID: 14996808
RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum.
Gerstmeir R, Cramer A, Dangel P, Schaffer S, Eikmanns BJ., J Bacteriol 186(9), 2004
PMID: 15090522
Acetate metabolism and its regulation in Corynebacterium glutamicum.
Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ., J Biotechnol 104(1-3), 2003
PMID: 12948633
Promoters of Corynebacterium glutamicum.
Pátek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G., J Biotechnol 104(1-3), 2003
PMID: 12948648
Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients.
Timm J, Post FA, Bekker LG, Walther GB, Wainwright HC, Manganelli R, Chan WT, Tsenova L, Gold B, Smith I, Kaplan G, McKinney JD., Proc Natl Acad Sci U S A 100(24), 2003
PMID: 14623960
Chromosomal locus that affects pathogenicity of Rhodococcus fascians.
Vereecke D, Cornelis K, Temmerman W, Jaziri M, Van Montagu M, Holsters M, Goethals K., J Bacteriol 184(4), 2002
PMID: 11807072
Evidence for an operative glyoxylate cycle in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius.
Uhrigshardt H, Walden M, John H, Petersen A, Anemüller S., FEBS Lett 513(2-3), 2002
PMID: 11904155
Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose.
Muffler A, Bettermann S, Haushalter M, Hörlein A, Neveling U, Schramm M, Sorgenfrei O., J Biotechnol 98(2-3), 2002
PMID: 12141991
Importance of phosphoenolpyruvate carboxylase of Corynebacterium glutamicum during the temperature triggered glutamic acid fermentation.
Delaunay S, Uy D, Baucher MF, Engasser JM, Guyonvarch A, Goergen JL., Metab Eng 1(4), 1999
PMID: 10937826

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 9297462
PubMed | Europe PMC

Suchen in

Google Scholar