Quantitative determination of metabolic fluxes during coutilization of two carbon sources: Comparative analyses with corynebacterium glutamicum during growth on acetate and/or glucose

Wendisch VF, De Graaf AA, Sahm H, Eikmanns BJ (2000)
Journal of Bacteriology 182(11): 3088-3096.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Wendisch, Volker F.UniBi ; De Graaf, A. A.; Sahm, H.; Eikmanns, B. J.
Abstract / Bemerkung
Growth of Corynebacterium glutamicum on mixtures of the carbon sources glucose and acetate is shown to be distinct from growth on either substrate alone. The organism showed nondiauxic growth on media containing acetate-glucose mixtures and simultaneously metabolized these substrates. Compared to those for growth on acetate or glucose alone, the consumption rates of the individual substrates were reduced during acetate-glucose cometabolism, resulting in similar total carbon consumption rates for the three conditions. By C-13-labeling experiments with subsequent nuclear magnetic resonance analyses in combination with metabolite balancing, the in vivo activities for pathways or single enzymes in the central metabolism of C. glatamicum were quantified for growth on acetate, on glucose, and on both carbon sources. The activity of the citric acid cycle was high on acetate, intermediate on acetate plus glucose, and low on glucose, corresponding to in vivo activities of citrate synthase of 413, 219, and 111 nmol (mg of protein)(-1) min(-1), respectively. The citric acid cycle was replenished by carboxylation of phosphoenolpyruvate (PEP) and/or pyruvate (30 nmol [mg of protein](-1) min(-1)) during growth on glucose. Although levels of PEP carboxylase and pyruvate carboxylase during growth on acetate were similar to those for growth on glucose, anaplerosis occurred solely by the glyoxylate cycle (99 nmol [mg of protein](-1) min(-1)). Surprisingly, the anaplerotic function was fulfilled completely by the glyoxylate cycle (50 nmol [mg of protein](-1) min(-1)) on glucose plus acetate also. Consistent with the predictions deduced from the metabolic flux analyses, a glyoxylate cycle-deficient mutant of C. glutamicum, constructed by targeted deletion of the isocitrate lyase and malate synthase genes, exhibited impaired growth on acetate-glucose mixtures.
Stichworte
pyruvate-carboxylase; isocitrate dehydrogenase; escherichia-coli; phosphoenolpyruvate carboxylase; nuclear-magnetic-resonance; tricarboxylic-acid cycle; sequence-analysis; bidirectional reaction steps; biochemical-characterization; azotobacter-vinelandii
Erscheinungsjahr
2000
Zeitschriftentitel
Journal of Bacteriology
Band
182
Ausgabe
11
Seite(n)
3088-3096
ISSN
0021-9193
Page URI
https://pub.uni-bielefeld.de/record/1895373

Zitieren

Wendisch VF, De Graaf AA, Sahm H, Eikmanns BJ. Quantitative determination of metabolic fluxes during coutilization of two carbon sources: Comparative analyses with corynebacterium glutamicum during growth on acetate and/or glucose. Journal of Bacteriology. 2000;182(11):3088-3096.
Wendisch, V. F., De Graaf, A. A., Sahm, H., & Eikmanns, B. J. (2000). Quantitative determination of metabolic fluxes during coutilization of two carbon sources: Comparative analyses with corynebacterium glutamicum during growth on acetate and/or glucose. Journal of Bacteriology, 182(11), 3088-3096. https://doi.org/10.1128/JB.182.11.3088-3096.2000
Wendisch, Volker F., De Graaf, A. A., Sahm, H., and Eikmanns, B. J. 2000. “Quantitative determination of metabolic fluxes during coutilization of two carbon sources: Comparative analyses with corynebacterium glutamicum during growth on acetate and/or glucose”. Journal of Bacteriology 182 (11): 3088-3096.
Wendisch, V. F., De Graaf, A. A., Sahm, H., and Eikmanns, B. J. (2000). Quantitative determination of metabolic fluxes during coutilization of two carbon sources: Comparative analyses with corynebacterium glutamicum during growth on acetate and/or glucose. Journal of Bacteriology 182, 3088-3096.
Wendisch, V.F., et al., 2000. Quantitative determination of metabolic fluxes during coutilization of two carbon sources: Comparative analyses with corynebacterium glutamicum during growth on acetate and/or glucose. Journal of Bacteriology, 182(11), p 3088-3096.
V.F. Wendisch, et al., “Quantitative determination of metabolic fluxes during coutilization of two carbon sources: Comparative analyses with corynebacterium glutamicum during growth on acetate and/or glucose”, Journal of Bacteriology, vol. 182, 2000, pp. 3088-3096.
Wendisch, V.F., De Graaf, A.A., Sahm, H., Eikmanns, B.J.: Quantitative determination of metabolic fluxes during coutilization of two carbon sources: Comparative analyses with corynebacterium glutamicum during growth on acetate and/or glucose. Journal of Bacteriology. 182, 3088-3096 (2000).
Wendisch, Volker F., De Graaf, A. A., Sahm, H., and Eikmanns, B. J. “Quantitative determination of metabolic fluxes during coutilization of two carbon sources: Comparative analyses with corynebacterium glutamicum during growth on acetate and/or glucose”. Journal of Bacteriology 182.11 (2000): 3088-3096.

134 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Precise tuning of the glyoxylate cycle in Escherichia coli for efficient tyrosine production from acetate.
Jo M, Noh MH, Lim HG, Kang CW, Im DK, Oh MK, Jung GY., Microb Cell Fact 18(1), 2019
PMID: 30890173
Reproduction of Large-Scale Bioreactor Conditions on Microfluidic Chips.
Ho P, Westerwalbesloh C, Kaganovitch E, Grünberger A, Neubauer P, Kohlheyer D, Lieres EV., Microorganisms 7(4), 2019
PMID: 31010155
Production of itaconic acid from acetate by engineering acid-tolerant Escherichia coli W.
Noh MH, Lim HG, Woo SH, Song J, Jung GY., Biotechnol Bioeng 115(3), 2018
PMID: 29197183
Production of L-valine from metabolically engineered Corynebacterium glutamicum.
Wang X, Zhang H, Quinn PJ., Appl Microbiol Biotechnol 102(10), 2018
PMID: 29594358
The RamA regulon: complex regulatory interactions in relation to central metabolism in Corynebacterium glutamicum.
Shah A, Blombach B, Gauttam R, Eikmanns BJ., Appl Microbiol Biotechnol 102(14), 2018
PMID: 29804137
Physiological Response of Corynebacterium glutamicum to Increasingly Nutrient-Rich Growth Conditions.
Graf M, Zieringer J, Haas T, Nieß A, Blombach B, Takors R., Front Microbiol 9(), 2018
PMID: 30210489
Coarse-graining bacteria colonies for modelling critical solute distributions in picolitre bioreactors for bacterial studies on single-cell level.
Westerwalbesloh C, Grünberger A, Wiechert W, Kohlheyer D, von Lieres E., Microb Biotechnol 10(4), 2017
PMID: 28371389
A new genome-scale metabolic model of Corynebacterium glutamicum and its application.
Zhang Y, Cai J, Shang X, Wang B, Liu S, Chai X, Tan T, Zhang Y, Wen T., Biotechnol Biofuels 10(), 2017
PMID: 28680478
Valorization of pyrolysis water: a biorefinery side stream, for 1,2-propanediol production with engineered Corynebacterium glutamicum.
Lange J, Müller F, Bernecker K, Dahmen N, Takors R, Blombach B., Biotechnol Biofuels 10(), 2017
PMID: 29201141
Regulons of global transcription factors in Corynebacterium glutamicum.
Toyoda K, Inui M., Appl Microbiol Biotechnol 100(1), 2016
PMID: 26496920
Detoxification of acidic biorefinery waste liquor for production of high value amino acid.
Christopher M, Anusree M, Mathew AK, Nampoothiri KM, Sukumaran RK, Pandey A., Bioresour Technol 213(), 2016
PMID: 26996259
Transcription of Sialic Acid Catabolism Genes in Corynebacterium glutamicum Is Subject to Catabolite Repression and Control by the Transcriptional Repressor NanR.
Uhde A, Brühl N, Goldbeck O, Matano C, Gurow O, Rückert C, Marin K, Wendisch VF, Krämer R, Seibold GM., J Bacteriol 198(16), 2016
PMID: 27274030
A rheostat mechanism governs the bifurcation of carbon flux in mycobacteria.
Murima P, Zimmermann M, Chopra T, Pojer F, Fonti G, Dal Peraro M, Alonso S, Sauer U, Pethe K, McKinney JD., Nat Commun 7(), 2016
PMID: 27555519
CeCaFDB: a curated database for the documentation, visualization and comparative analysis of central carbon metabolic flux distributions explored by 13C-fluxomics.
Zhang Z, Shen T, Rui B, Zhou W, Zhou X, Shang C, Xin C, Liu X, Li G, Jiang J, Li C, Li R, Han M, You S, Yu G, Yi Y, Wen H, Liu Z, Xie X., Nucleic Acids Res 43(database issue), 2015
PMID: 25392417
Salmonella typhimurium and Escherichia coli dissimilarity: Closely related bacteria with distinct metabolic profiles.
Sargo CR, Campani G, Silva GG, Giordano RC, Da Silva AJ, Zangirolami TC, Correia DM, Ferreira EC, Rocha I., Biotechnol Prog 31(5), 2015
PMID: 26097206
Modeling and CFD simulation of nutrient distribution in picoliter bioreactors for bacterial growth studies on single-cell level.
Westerwalbesloh C, Grünberger A, Stute B, Weber S, Wiechert W, Kohlheyer D, von Lieres E., Lab Chip 15(21), 2015
PMID: 26345659
Metabolic engineering of Corynebacterium glutamicum for glycolate production.
Zahoor A, Otten A, Wendisch VF., J Biotechnol 192 Pt B(), 2014
PMID: 24486442
Carbon flux analysis by 13C nuclear magnetic resonance to determine the effect of CO2 on anaerobic succinate production by Corynebacterium glutamicum.
Radoš D, Turner DL, Fonseca LL, Carvalho AL, Blombach B, Eikmanns BJ, Neves AR, Santos H., Appl Environ Microbiol 80(10), 2014
PMID: 24610842
Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Krämer R, Wendisch VF, Seibold GM., Appl Microbiol Biotechnol 98(12), 2014
PMID: 24668244
Genome-wide analysis of the role of global transcriptional regulator GntR1 in Corynebacterium glutamicum.
Tanaka Y, Takemoto N, Ito T, Teramoto H, Yukawa H, Inui M., J Bacteriol 196(18), 2014
PMID: 24982307
Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum.
Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Krämer R, Wendisch VF, Seibold GM, Marin K., Appl Microbiol Biotechnol 97(4), 2013
PMID: 22854894
Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments.
Grünberger A, van Ooyen J, Paczia N, Rohe P, Schiendzielorz G, Eggeling L, Wiechert W, Kohlheyer D, Noack S., Biotechnol Bioeng 110(1), 2013
PMID: 22890752
Aerobic metabolism of mixed carbon sources in sequencing batch reactor under pulse and continuous feeding.
Ciggin AS, Orhon D, Capitani D, Miccheli A, Puccetti C, Majone M., Bioresour Technol 129(), 2013
PMID: 23232227
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2013
PMID: 23164409
Role of central metabolism in the osmoadaptation of the halophilic bacterium Chromohalobacter salexigens.
Pastor JM, Bernal V, Salvador M, Argandoña M, Vargas C, Csonka L, Sevilla A, Iborra JL, Nieto JJ, Cánovas M., J Biol Chem 288(24), 2013
PMID: 23615905
Proteome response of Corynebacterium glutamicum to high concentration of industrially relevant C₄ and C₅ dicarboxylic acids.
Vasco-Cárdenas MF, Baños S, Ramos A, Martín JF, Barreiro C., J Proteomics 85(), 2013
PMID: 23624027
C1 metabolism in Corynebacterium glutamicum: an endogenous pathway for oxidation of methanol to carbon dioxide.
Witthoff S, Mühlroth A, Marienhagen J, Bott M., Appl Environ Microbiol 79(22), 2013
PMID: 24014532
Photoautotrophic production of D-lactic acid in an engineered cyanobacterium.
Varman AM, Yu Y, You L, Tang YJ., Microb Cell Fact 12(), 2013
PMID: 24274114
Corynebacterium glutamicum as a potent biocatalyst for the bioconversion of pentose sugars to value-added products.
Gopinath V, Murali A, Dhar KS, Nampoothiri KM., Appl Microbiol Biotechnol 93(1), 2012
PMID: 22094976
The ethylmalonyl-CoA pathway is used in place of the glyoxylate cycle by Methylobacterium extorquens AM1 during growth on acetate.
Schneider K, Peyraud R, Kiefer P, Christen P, Delmotte N, Massou S, Portais JC, Vorholt JA., J Biol Chem 287(1), 2012
PMID: 22105076
Biotin protein ligase from Corynebacterium glutamicum: role for growth and L: -lysine production.
Peters-Wendisch P, Stansen KC, Götker S, Wendisch VF., Appl Microbiol Biotechnol 93(6), 2012
PMID: 22159614
Arabitol metabolism of Corynebacterium glutamicum and its regulation by AtlR.
Laslo T, von Zaluskowski P, Gabris C, Lodd E, Rückert C, Dangel P, Kalinowski J, Auchter M, Seibold G, Eikmanns BJ., J Bacteriol 194(5), 2012
PMID: 22178972
Rewiring carbon catabolite repression for microbial cell factory.
Vinuselvi P, Kim MK, Lee SK, Ghim CM., BMB Rep 45(2), 2012
PMID: 22360882
Improved L-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity.
van Ooyen J, Noack S, Bott M, Reth A, Eggeling L., Biotechnol Bioeng 109(8), 2012
PMID: 22392073
Postgenomic approaches to using corynebacteria as biocatalysts.
Vertès AA, Inui M, Yukawa H., Annu Rev Microbiol 66(), 2012
PMID: 22803796
Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products.
Zahoor A, Lindner SN, Wendisch VF., Comput Struct Biotechnol J 3(), 2012
PMID: 24688664
Co-consumption of methanol and succinate by Methylobacterium extorquens AM1.
Peyraud R, Kiefer P, Christen P, Portais JC, Vorholt JA., PLoS One 7(11), 2012
PMID: 23133625
Absence of diauxie during simultaneous utilization of glucose and Xylose by Sulfolobus acidocaldarius.
Joshua CJ, Dahl R, Benke PI, Keasling JD., J Bacteriol 193(6), 2011
PMID: 21239580
Control of adhA and sucR expression by the SucR regulator in Corynebacterium glutamicum.
Auchter M, Laslo T, Fleischer C, Schiller L, Arndt A, Gaigalat L, Kalinowski J, Eikmanns BJ., J Biotechnol 152(3), 2011
PMID: 21320555
Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM., Appl Microbiol Biotechnol 92(5), 2011
PMID: 21796382
Increased glucose utilization in Corynebacterium glutamicum by use of maltose, and its application for the improvement of L-valine productivity.
Krause FS, Henrich A, Blombach B, Krämer R, Eikmanns BJ, Seibold GM., Appl Environ Microbiol 76(1), 2010
PMID: 19880641
Studies on substrate utilisation in L-valine-producing Corynebacterium glutamicum strains deficient in pyruvate dehydrogenase complex.
Bartek T, Rudolf C, Kerssen U, Klein B, Blombach B, Lang S, Eikmanns BJ, Oldiges M., Bioprocess Biosyst Eng 33(7), 2010
PMID: 20204663
Metabolic fluxes and beyond-systems biology understanding and engineering of microbial metabolism.
Kohlstedt M, Becker J, Wittmann C., Appl Microbiol Biotechnol 88(5), 2010
PMID: 20821203
Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates.
de Carvalho LP, Fischer SM, Marrero J, Nathan C, Ehrt S, Rhee KY., Chem Biol 17(10), 2010
PMID: 21035735
Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production.
Krause FS, Blombach B, Eikmanns BJ., Appl Environ Microbiol 76(24), 2010
PMID: 20935122
A kinetic platform for in silico modeling of the metabolic dynamics in Escherichia coli.
Barve A, Gupta A, Solapure SM, Kumar A, Ramachandran V, Seshadri K, Vali S, Datta S., Adv Appl Bioinform Chem 3(), 2010
PMID: 21918631
Pathway identification combining metabolic flux and functional genomics analyses: acetate and propionate activation by Corynebacterium glutamicum.
Veit A, Rittmann D, Georgi T, Youn JW, Eikmanns BJ, Wendisch VF., J Biotechnol 140(1-2), 2009
PMID: 19162097
Exopolyphosphatases PPX1 and PPX2 from Corynebacterium glutamicum.
Lindner SN, Knebel S, Wesseling H, Schoberth SM, Wendisch VF., Appl Environ Microbiol 75(10), 2009
PMID: 19304823
Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum.
Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H., Appl Environ Microbiol 75(11), 2009
PMID: 19346355
Visualizing post genomics data-sets on customized pathway maps by ProMeTra-aeration-dependent gene expression and metabolism of Corynebacterium glutamicum as an example.
Neuweger H, Persicke M, Albaum SP, Bekel T, Dondrup M, Hüser AT, Winnebald J, Schneider J, Kalinowski J, Goesmann A., BMC Syst Biol 3(), 2009
PMID: 19698148
Metabolic fluxes in the central carbon metabolism of Dinoroseobacter shibae and Phaeobacter gallaeciensis, two members of the marine Roseobacter clade.
Fürch T, Preusse M, Tomasch J, Zech H, Wagner-Döbler I, Rabus R, Wittmann C., BMC Microbiol 9(), 2009
PMID: 19788729
The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences.
Brinkrolf K, Plöger S, Solle S, Brune I, Nentwich SS, Hüser AT, Kalinowski J, Pühler A, Tauch A., Microbiology 154(pt 4), 2008
PMID: 18375800
Function and transcriptional regulation of the isocitrate lyase in Pseudomonas aeruginosa.
Kretzschmar U, Khodaverdi V, Jeoung JH, Görisch H., Arch Microbiol 190(2), 2008
PMID: 18574579
Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum.
Youn JW, Jolkver E, Krämer R, Marin K, Wendisch VF., J Bacteriol 190(19), 2008
PMID: 18658264
Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum.
Rittmann D, Lindner SN, Wendisch VF., Appl Environ Microbiol 74(20), 2008
PMID: 18757581
Structural and functional characterization of the LldR from Corynebacterium glutamicum: a transcriptional repressor involved in L-lactate and sugar utilization.
Gao YG, Suzuki H, Itou H, Zhou Y, Tanaka Y, Wachi M, Watanabe N, Tanaka I, Yao M., Nucleic Acids Res 36(22), 2008
PMID: 18988622
The phosphotransferase system of Corynebacterium glutamicum: features of sugar transport and carbon regulation.
Moon MW, Park SY, Choi SK, Lee JK., J Mol Microbiol Biotechnol 12(1-2), 2007
PMID: 17183210
Effect of elevated dissolved carbon dioxide concentrations on growth of Corynebacterium glutamicum on D-glucose and L-lactate.
Bäumchen C, Knoll A, Husemann B, Seletzky J, Maier B, Dietrich C, Amoabediny G, Büchs J., J Biotechnol 128(4), 2007
PMID: 17275119
L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum.
Blombach B, Schreiner ME, Holátko J, Bartek T, Oldiges M, Eikmanns BJ., Appl Environ Microbiol 73(7), 2007
PMID: 17293513
NCgl2620 encodes a class II polyphosphate kinase in Corynebacterium glutamicum.
Lindner SN, Vidaurre D, Willbold S, Schoberth SM, Wendisch VF., Appl Environ Microbiol 73(15), 2007
PMID: 17545325
Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis.
Shirai T, Fujimura K, Furusawa C, Nagahisa K, Shioya S, Shimizu H., Microb Cell Fact 6(), 2007
PMID: 17587457
Carbon metabolism of intracellular bacteria.
Muñoz-Elías EJ, McKinney JD., Cell Microbiol 8(1), 2006
PMID: 16367862
Emerging Corynebacterium glutamicum systems biology.
Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W., J Biotechnol 124(1), 2006
PMID: 16406159
Control of carbon flux through enzymes of central and intermediary metabolism during growth of Escherichia coli on acetate.
El-Mansi M, Cozzone AJ, Shiloach J, Eikmanns BJ., Curr Opin Microbiol 9(2), 2006
PMID: 16530464
On-line optimization of glutamate production based on balanced metabolic control by RQ.
Xiao J, Shi Z, Gao P, Feng H, Duan Z, Mao Z., Bioprocess Biosyst Eng 29(2), 2006
PMID: 16614826
Metabolic activity of Corynebacterium glutamicum grown on L: -lactic acid under stress.
Seletzky JM, Noack U, Fricke J, Hahn S, Büchs J., Appl Microbiol Biotechnol 72(6), 2006
PMID: 16642330
Markov Chain Monte Carlo Algorithm based metabolic flux distribution analysis on Corynebacterium glutamicum.
Kadirkamanathan V, Yang J, Billings SA, Wright PC., Bioinformatics 22(21), 2006
PMID: 16940326
Precise metabolic flux analysis of coryneform bacteria by gas chromatography-mass spectrometry and verification by nuclear magnetic resonance.
Shirai T, Matsuzaki K, Kuzumoto M, Nagahisa K, Furusawa C, Shioya S, Shimizu H., J Biosci Bioeng 102(5), 2006
PMID: 17189168
Manipulating corynebacteria, from individual genes to chromosomes.
Vertès AA, Inui M, Yukawa H., Appl Environ Microbiol 71(12), 2005
PMID: 16332735
Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose.
Kiefer P, Heinzle E, Zelder O, Wittmann C., Appl Environ Microbiol 70(1), 2004
PMID: 14711646
Corynebacterium glutamicum glyceraldehyde-3-phosphate dehydrogenase isoforms with opposite, ATP-dependent regulation.
Omumasaba CA, Okai N, Inui M, Yukawa H., J Mol Microbiol Biotechnol 8(2), 2004
PMID: 15925900
High-throughput phenomics: experimental methods for mapping fluxomes.
Sauer U., Curr Opin Biotechnol 15(1), 2004
PMID: 15102468
In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome.
Krömer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C., J Bacteriol 186(6), 2004
PMID: 14996808
Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis.
Netzer R, Krause M, Rittmann D, Peters-Wendisch PG, Eggeling L, Wendisch VF, Sahm H., Arch Microbiol 182(5), 2004
PMID: 15375646
Cometabolism of a nongrowth substrate: L-serine utilization by Corynebacterium glutamicum.
Netzer R, Peters-Wendisch P, Eggeling L, Sahm H., Appl Environ Microbiol 70(12), 2004
PMID: 15574911
Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source.
Wittmann C, Kiefer P, Zelder O., Appl Environ Microbiol 70(12), 2004
PMID: 15574927
Metabolic networks of microbial systems.
Bhattacharya S, Chakrabarti S, Nayak A, Bhattacharya SK., Microb Cell Fact 2(1), 2003
PMID: 12740044
Acetate metabolism and its regulation in Corynebacterium glutamicum.
Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ., J Biotechnol 104(1-3), 2003
PMID: 12948633
Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source.
Hüser AT, Becker A, Brune I, Dondrup M, Kalinowski J, Plassmeier J, Pühler A, Wiegräbe I, Tauch A., J Biotechnol 106(2-3), 2003
PMID: 14651867
Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose.
Muffler A, Bettermann S, Haushalter M, Hörlein A, Neveling U, Schramm M, Sorgenfrei O., J Biotechnol 98(2-3), 2002
PMID: 12141991
Carbohydrate cycling in micro-organisms: what can (13)C-NMR tell us?
Portais JC, Delort AM., FEMS Microbiol Rev 26(4), 2002
PMID: 12413666
The ptsI gene encoding enzyme I of the phosphotransferase system of Corynebacterium glutamicum.
Kotrba P, Inui M, Yukawa H., Biochem Biophys Res Commun 289(5), 2001
PMID: 11741338

55 References

Daten bereitgestellt von Europe PubMed Central.

Uncoupling by Acetic Acid Limits Growth of and Acetogenesis by Clostridium thermoaceticum.
Baronofsky JJ, Schreurs WJ, Kashket ER., Appl. Environ. Microbiol. 48(6), 1984
PMID: 16346677
The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli.
Brown TD, Jones-Mortimer MC, Kornberg HL., J. Gen. Microbiol. 102(2), 1977
PMID: 21941
Two-carbon compounds and fatty acids as carbon sources
Clark D, Cronan J., 1996
Batch kinetics of during growth on various substrates: use of substrate mixtures to localize metabolic bottlenecks
Cocaign M, Monnet C, Lindley N., 1993
Simultaneous consumption of glucose and fructose from sugar mixtures during batch growth of
Dominguez H, Cocaign-Bousquet M, Lindley N., 1993
Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose.
Dominguez H, Rollin C, Guyonvarch A, Guerquin-Kern JL, Cocaign-Bousquet M, Lindley ND., Eur. J. Biochem. 254(1), 1998
PMID: 9652400
Carrier-mediated acetate uptake in
Ebbighausen H, Weil B, Krämer R., 1991
Amplification of three threonine biosynthesis genes in and its influence on carbon flux in different strains
Eikmanns B, Metzger M, Reinscheid D, Sahm H., 1991
Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase.
Eikmanns BJ, Thum-Schmitz N, Eggeling L, Ludtke KU, Sahm H., Microbiology (Reading, Engl.) 140 ( Pt 8)(), 1994
PMID: 7522844
Phosphorylation of Isocitrate dehydrogenase of Escherichia coli.
Garnak M, Reeves HC., Science 203(4385), 1979
PMID: 34215
Diauxic growth in Azotobacter vinelandii.
George SE, Costenbader CJ, Melton T., J. Bacteriol. 164(2), 1985
PMID: 3863813
Strategies of mixed substrate utilization in microorganisms.
Harder W, Dijkhuizen L., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 297(1088), 1982
PMID: 6180444
Glutamic acid
Kinoshita S, Tanaka K., 1972
The era of pathway quantification.
Koshland DE Jr., Science 280(5365), 1998
PMID: 9599157
Uptake of glutamate in Corynebacterium glutamicum. 1. Kinetic properties and regulation by internal pH and potassium.
Kramer R, Lambert C, Hoischen C, Ebbighausen H., Eur. J. Biochem. 194(3), 1990
PMID: 1980106
The genus —nonmedical
Liebl W., 1991
C labeling in studies of metabolic regulation
London R., 1988
Nuclear magnetic resonance studies of cellular metabolism.
Lundberg P, Harmsen E, Ho C, Vogel HJ., Anal. Biochem. 191(2), 1990
PMID: 2085167
Response of the central metabolism of Corynebacterium glutamicum to different flux burdens.
Marx A, Striegel K, de Graaf AA, Sahm H, Eggeling L., Biotechnol. Bioeng. 56(2), 1997
PMID: 18636622
Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase.
Marx A, Eikmanns BJ, Sahm H, de Graaf AA, Eggeling L., Metab. Eng. 1(1), 1999
PMID: 10935753
The growth of bacterial cultures
Monod J., 1949
Phosphoenolpyruvate carboxylase in is dispensable for growth and lysine production
Peters-Wendisch P, Eikmanns B, Thierbach G, Bachmann B, Sahm H., 1993
C3-carboxylation as an anaplerotic reaction in phosphoenolpyruvate carboxylase-deficient Corynebacterium glutamicum.
Peters-Wendisch PG, Wendisch VF, de Graaf AA, Eikmanns BJ, Sahm H., Arch. Microbiol. 165(6), 1996
PMID: 8661932
Pyruvate carboxylase as an anaplerotic enzyme in
Peters-Wendisch P, Wendisch V, Paul S, Eikmanns B, Sahm H., 1997
Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene.
Peters-Wendisch PG, Kreutzer C, Kalinowski J, Patek M, Sahm H, Eikmanns BJ., Microbiology (Reading, Engl.) 144 ( Pt 4)(), 1998
PMID: 9579065
Metabolic flux distribution in Corynebacterium melassecola ATCC 17965 for various carbon sources.
Pons A, Dussap CG, Pequignot C, Gros JB., Biotechnol. Bioeng. 51(2), 1996
PMID: 18624327
Malate synthase from Corynebacterium glutamicum: sequence analysis of the gene and biochemical characterization of the enzyme.
Reinscheid DJ, Eikmanns BJ, Sahm H., Microbiology (Reading, Engl.) 140 ( Pt 11)(), 1994
PMID: 7812449
Cloning, sequence analysis, expression and inactivation of the Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase and acetate kinase.
Reinscheid DJ, Schnicke S, Rittmann D, Zahnow U, Sahm H, Eikmanns BJ., Microbiology (Reading, Engl.) 145 ( Pt 2)(), 1999
PMID: 10075432
Growth and energetics of Leuconostoc oenos during cometabolism of glucose with citrate or fructose.
Salou P, Loubiere P, Pareilleux A., Appl. Environ. Microbiol. 60(5), 1994
PMID: 8017930

Sambrook J, Fritsch E, Maniatis T., 1989
Quantitative in vivo nuclear magnetic resonance studies of hybridoma metabolism.
Sharfstein ST, Tucker SN, Mancuso A, Blanch HW, Clark DS., Biotechnol. Bioeng. 43(11), 1994
PMID: 18615517
A functionally split pathway for lysine synthesis in Corynebacterium glutamicium.
Schrumpf B, Schwarzer A, Kalinowski J, Puhler A, Eggeling L, Sahm H., J. Bacteriol. 173(14), 1991
PMID: 1906065
Carbon-13 as a label in biosynthetic studies.
Sequin U, Scott AI., Science 186(4159), 1974
PMID: 4606307
Flux partitioning in the split pathway of lysine synthesis in
Sonntag K, Eggeling L, de A, Sahm H., 1995
C NMR studies of the fluxes in the central metabolism of during growth and overproduction of amino acids in batch cultures
Sonntag K, Schwinde J, de A, Marx A, Eikmanns B, Wiechert W, Sahm H., 1995
Network rigidity and metabolic engineering in metabolite overproduction.
Stephanopoulos G, Vallino JJ., Science 252(5013), 1991
PMID: 1904627
Biosynthetically directed fractional C-labeling of proteinogenic amino acids
Szyperski T., 1996
Control of diauxic growth of Azotobacter vinelandii on acetate and glucose.
Tauchert K, Jahn A, Oelze J., J. Bacteriol. 172(11), 1990
PMID: 2228968
Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction.
Vallino JJ, Stephanopoulos G., Biotechnol. Bioeng. 41(6), 1993
PMID: 18609599
Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes.
Wendisch VF, Spies M, Reinscheid DJ, Schnicke S, Sahm H, Eikmanns BJ., Arch. Microbiol. 168(4), 1997
PMID: 9297462
Bidirectional reaction steps in metabolic networks: II. Flux estimation and statistical analysis.
Wiechert W, Siefke C, de Graaf AA, Marx A., Biotechnol. Bioeng. 55(1), 1997
PMID: 18636450
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 10809686
PubMed | Europe PMC

Suchen in

Google Scholar