Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria

Weber DG, Sahm K, Polen T, Wendisch VF, Antranikian G (2008)
Journal of Applied Microbiology 105(4): 951-962.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Weber, D. G.; Sahm, K.; Polen, T.; Wendisch, Volker F.UniBi ; Antranikian, G.
Abstract / Bemerkung
Aims: The design and evaluation of an oligonucleotide microarray in order to detect and identify viable bacterial species that play a significant role in beer spoilage. These belong to the species of the genera Lactobacillus, Megasphaera, Pediococcus and Pectinatus. Methods and Results: Oligonucleotide probes specific to beer spoilage bacteria were designed. In order to detect viable bacteria, the probes were designed to target the intergenic spacer regions (ISR) between 16S and 23S rRNA. Prior to hybridization the ISR were amplified by combining reverse transcriptase and polymerase chain reactions using a designed consenus primer. The developed oligonucleotide microarrays allows the detection of viable beer spoilage bacteria. Conclusions: This method allows the detection and discrimination of single bacterial species in a sample containing complex microbial community. Furthermore, microarrays using oligonucleotide probes targeting the ISR allow the distinction between viable bacteria with the potential to grow and non growing bacteria. Significance and Impact of the Study: The results demonstrate the feasibility of oligonucleotide microarrays as a contamination control in food industry for the detection and identification of spoilage micro-organisms within a mixed population.
Stichworte
reverse transcription-pcr; intergenic spacer regions; 16s ribosomal-rna; microarray; food; polymerase-chain-reaction; biotechnology; brewery; gene-expression; listeria-monocytogenes; foodborne pathogens; nucleotide-sequence; escherichia-coli-cells; pcr; DNA microarray
Erscheinungsjahr
2008
Zeitschriftentitel
Journal of Applied Microbiology
Band
105
Ausgabe
4
Seite(n)
951-962
ISSN
1364-5072
eISSN
1365-2672
Page URI
https://pub.uni-bielefeld.de/record/1895324

Zitieren

Weber DG, Sahm K, Polen T, Wendisch VF, Antranikian G. Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria. Journal of Applied Microbiology. 2008;105(4):951-962.
Weber, D. G., Sahm, K., Polen, T., Wendisch, V. F., & Antranikian, G. (2008). Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria. Journal of Applied Microbiology, 105(4), 951-962. https://doi.org/10.1111/j.1365-2672.2008.03799.x
Weber, D. G., Sahm, K., Polen, T., Wendisch, Volker F., and Antranikian, G. 2008. “Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria”. Journal of Applied Microbiology 105 (4): 951-962.
Weber, D. G., Sahm, K., Polen, T., Wendisch, V. F., and Antranikian, G. (2008). Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria. Journal of Applied Microbiology 105, 951-962.
Weber, D.G., et al., 2008. Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria. Journal of Applied Microbiology, 105(4), p 951-962.
D.G. Weber, et al., “Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria”, Journal of Applied Microbiology, vol. 105, 2008, pp. 951-962.
Weber, D.G., Sahm, K., Polen, T., Wendisch, V.F., Antranikian, G.: Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria. Journal of Applied Microbiology. 105, 951-962 (2008).
Weber, D. G., Sahm, K., Polen, T., Wendisch, Volker F., and Antranikian, G. “Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria”. Journal of Applied Microbiology 105.4 (2008): 951-962.

17 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Overview of craft brewing specificities and potentially associated microbiota.
Rodhouse L, Carbonero F., Crit Rev Food Sci Nutr 59(3), 2019
PMID: 28910550
Identification of beer spoilage microorganisms using the MALDI Biotyper platform.
Turvey ME, Weiland F, Meneses J, Sterenberg N, Hoffmann P., Appl Microbiol Biotechnol 100(6), 2016
PMID: 26857464
Lipidomics as an important key for the identification of beer-spoilage bacteria.
Řezanka T, Matoulková D, Benada O, Sigler K., Lett Appl Microbiol 60(6), 2015
PMID: 25773514
Amplicon sequencing for the quantification of spoilage microbiota in complex foods including bacterial spores.
de Boer P, Caspers M, Sanders JW, Kemperman R, Wijman J, Lommerse G, Roeselers G, Montijn R, Abee T, Kort R., Microbiome 3(), 2015
PMID: 26217487
Fluorescence-based bioassays for the detection and evaluation of food materials.
Nishi K, Isobe S, Zhu Y, Kiyama R., Sensors (Basel) 15(10), 2015
PMID: 26473869
In situ production of human β defensin-3 in lager yeasts provides bactericidal activity against beer-spoiling bacteria under fermentation conditions.
James TC, Gallagher L, Titze J, Bourke P, Kavanagh J, Arendt E, Bond U., J Appl Microbiol 116(2), 2014
PMID: 24176036
Nucleic acid detection technologies and marker molecules in bacterial diagnostics.
Scheler O, Glynn B, Kurg A., Expert Rev Mol Diagn 14(4), 2014
PMID: 24724586
Identification of beer-spoilage bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
Wieme AD, Spitaels F, Aerts M, De Bruyne K, Van Landschoot A, Vandamme P., Int J Food Microbiol 185(), 2014
PMID: 24929682
Target amplification for broad spectrum microbial diagnostics and detection.
Leski TA, Malanoski AP, Stenger DA, Lin B., Future Microbiol 5(2), 2010
PMID: 20143944
Guide to designing, conducting, publishing and communicating results of clinical studies involving probiotic applications in human participants.
Shane AL, Cabana MD, Vidry S, Merenstein D, Hummelen R, Ellis CL, Heimbach JT, Hempel S, Lynch SV, Sanders ME, Tancredi DJ., Gut Microbes 1(4), 2010
PMID: 21327031
Community dynamics of bacteria in sourdough fermentations as revealed by their metatranscriptome.
Weckx S, Van der Meulen R, Allemeersch J, Huys G, Vandamme P, Van Hummelen P, De Vuyst L., Appl Environ Microbiol 76(16), 2010
PMID: 20581179
Improved Enrichment Cultivation of Beer Spoiling Lactic Acid Bacteria by Continuous Glucose Addition to the Culture.
Taskila Sanna, Neubauer Peter, Tuomola Mika, Breitenstein Antje, Kronlof Jukka, Hillukkala Tomi., J. Inst. Brew. 115(3), 2009
PMID: IND44308970
Microbial communities in industrial environment.
Maukonen J, Saarela M., Curr Opin Microbiol 12(3), 2009
PMID: 19447068
A DNA array based assay for the characterization of microbial community in raw milk.
Giannino ML, Aliprandi M, Feligini M, Vanoni L, Brasca M, Fracchetti F., J Microbiol Methods 78(2), 2009
PMID: 19482050

67 References

Daten bereitgestellt von Europe PubMed Central.

DNA microarray technology used for studying foodborne pathogens and microbial habitats: minireview.
Al-Khaldi SF, Martin SA, Rasooly A, Evans JD., J AOAC Int 85(4), 2002
PMID: 12180686
The 16s/23s ribosomal spacer region as a target for DNA probes to identify eubacteria.
Barry T, Glennon CM, Dunican LK, Gannon F., PCR Methods Appl. 1(2), 1991
PMID: 1726918
Hybridization of DNA targets to glass-tethered oligonucleotide probes.
Beattie WG, Meng L, Turner SL, Varma RS, Dao DD, Beattie KL., Mol. Biotechnol. 4(3), 1995
PMID: 8680928
A nested array of rRNA targeted probes for the detection and identification of enterococci by reverse hybridization.
Behr T, Koob C, Schedl M, Mehlen A, Meier H, Knopp D, Frahm E, Obst U, Schleifer K, Niessner R, Ludwig W., Syst. Appl. Microbiol. 23(4), 2000
PMID: 11249027
Detection of viable Legionella pneumophila in water by polymerase chain reaction and gene probe methods.
Bej AK, Mahbubani MH, Atlas RM., Appl. Environ. Microbiol. 57(2), 1991
PMID: 2014994
Detection of viable Vibrio cholerae by reverse-transcriptase polymerase chain reaction (RT-PCR).
Bej AK, Ng WY, Morgan S, Jones DD, Mahbubani MH., Mol. Biotechnol. 5(1), 1996
PMID: 8853011
Detection of bacterial pathogens in environmental samples using DNA microarrays.
Call DR, Borucki MK, Loge FJ., J. Microbiol. Methods 53(2), 2003
PMID: 12654494
Depletion of pre-16S rRNA in starved Escherichia coli cells.
Cangelosi GA, Brabant WH., J. Bacteriol. 179(14), 1997
PMID: 9226253
Detection of rifampin- and ciprofloxacin-resistant Mycobacterium tuberculosis by using species-specific assays for precursor rRNA.
Cangelosi GA, Brabant WH, Britschgi TB, Wallis CK., Antimicrob. Agents Chemother. 40(8), 1996
PMID: 8843282
Anaerobic gram-negative bacteria in brewing - a review
Chelack, J Am Soc Brew Chem 45(), 1987
Comparative analysis of the genes encoding 23S-5S rRNA intergenic spacer regions of Lactobacillus casei-related strains.
Chen H, Lim CK, Lee YK, Chan YN., Int. J. Syst. Evol. Microbiol. 50 Pt 2(), 2000
PMID: 10758849
A medium for the cultivation of lactobacilli
De, J Appl Bacteriol 23(), 1960
Optical melting of 128 octamer DNA duplexes. Effects of base pair location and nearest neighbors on thermal stability.
Doktycz MJ, Morris MD, Dormady SJ, Beattie KL, Jacobson KB., J. Biol. Chem. 270(15), 1995
PMID: 7721738
Sequence analysis by hybridization with oligonucleotide microchip: identification of beta-thalassemia mutations.
Drobyshev A, Mologina N, Shik V, Pobedimskaya D, Yershov G, Mirzabekov A., Gene 188(1), 1997
PMID: 9099858
DNA arrays for analysis of gene expression.
Eisen MB, Brown PO., Meth. Enzymol. 303(), 1999
PMID: 10349646
Megasphaera cerevisiae sp. nov.: a new gram-negative obligately anaerobic coccus isolated from spoiled beer
Engelmann, Syst Appl Microbiol 6(), 1985
How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity.
Fox GE, Wisotzkey JD, Jurtshuk P Jr, Fox GE., Int. J. Syst. Bacteriol. 42(1), 1992
PMID: 1371061
New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region.
Gurtler V, Stanisich VA., Microbiology (Reading, Engl.) 142 ( Pt 1)(), 1996
PMID: 8581168
Detection of gene amplification by genomic hybridization to cDNA microarrays.
Heiskanen MA, Bittner ML, Chen Y, Khan J, Adler KE, Trent JM, Meltzer PS., Cancer Res. 60(4), 2000
PMID: 10706083
Simultaneous recovery of RNA and DNA from soils and sediments.
Hurt RA, Qiu X, Wu L, Roh Y, Palumbo AV, Tiedje JM, Zhou J., Appl. Environ. Microbiol. 67(10), 2001
PMID: 11571148
Specific spoilage organisms in breweries and laboratory media for their detection.
Jespersen L, Jakobsen M., Int. J. Food Microbiol. 33(1), 1996
PMID: 8913814
Detection and identification of intestinal pathogenic bacteria by hybridization to oligonucleotide microarrays.
Jin LQ, Li JW, Wang SQ, Chao FH, Wang XW, Yuan ZQ., World J. Gastroenterol. 11(48), 2005
PMID: 16437687
Development of a sensitive DNA microarray suitable for rapid detection of Campylobacter spp.
Keramas G, Bang DD, Lund M, Madsen M, Rasmussen SE, Bunkenborg H, Telleman P, Christensen CB., Mol. Cell. Probes 17(4), 2003
PMID: 12944122
Sensitive detection of viable Listeria monocytogenes by reverse transcription-PCR.
Klein PG, Juneja VK., Appl. Environ. Microbiol. 63(11), 1997
PMID: 9361430
16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter- and intraspecific Bifidobacterium phylogeny.
Leblond-Bourget N, Philippe H, Mangin I, Decaris B., Int. J. Syst. Bacteriol. 46(1), 1996
PMID: 8573484
Instability and decay of the primary structure of DNA.
Lindahl T., Nature 362(6422), 1993
PMID: 8469282
tRNA genes are found between 16S and 23S rRNA genes in Bacillus subtilis.
Loughney K, Lund E, Dahlberg JE., Nucleic Acids Res. 10(5), 1982
PMID: 6280153
Waterborne pathogen detection by use of oligonucleotide-based microarrays.
Maynard C, Berthiaume F, Lemarchand K, Harel J, Payment P, Bayardelle P, Masson L, Brousseau R., Appl. Environ. Microbiol. 71(12), 2005
PMID: 16332846
rRNA stability in heat-killed and UV-irradiated enterotoxigenic Staphylococcus aureus and Escherichia coli O157:H7.
McKillip JL, Jaykus LA, Drake M., Appl. Environ. Microbiol. 64(11), 1998
PMID: 9797275
Detection of alcohol-tolerant hiochi bacteria by PCR.
Nakagawa T, Shimada M, Mukai H, Asada K, Kato I, Fujino K, Sato T., Appl. Environ. Microbiol. 60(2), 1994
PMID: 7510942
Microarray-based, high-throughput gene expression profiling of microRNAs.
Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z., Nat. Methods 1(2), 2004
PMID: 15782179
Oligonucleotide microarray for identification of Bacillus anthracis based on intergenic transcribed spacers in ribosomal DNA.
Nubel U, Schmidt PM, Reiss E, Bier F, Beyer W, Naumann D., FEMS Microbiol. Lett. 240(2), 2004
PMID: 15522510
Monitoring precursor 16S rRNAs of Acinetobacter spp. in activated sludge wastewater treatment systems.
Oerther DB, Pernthaler J, Schramm A, Amann R, Raskin L., Appl. Environ. Microbiol. 66(5), 2000
PMID: 10788395
Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays.
Polen T, Wendisch VF., Appl. Biochem. Biotechnol. 118(1-3), 2004
PMID: 15304751
DNA microarray analyses of the long-term adaptive response of Escherichia coli to acetate and propionate.
Polen T, Rittmann D, Wendisch VF, Sahm H., Appl. Environ. Microbiol. 69(3), 2003
PMID: 12620868
Optimization of oligonucleotide-based DNA microarrays.
Relogio A, Schwager C, Richter A, Ansorge W, Valcarcel J., Nucleic Acids Res. 30(11), 2002
PMID: 12034852
Primer3 on the WWW for general users and for biologist programmers.
Rozen S, Skaletsky H., Methods Mol. Biol. 132(), 2000
PMID: 10547847
Quantitative monitoring of gene expression patterns with a complementary DNA microarray.
Schena M, Shalon D, Davis RW, Brown PO., Science 270(5235), 1995
PMID: 7569999
Normalization strategies for cDNA microarrays.
Schuchhardt J, Beule D, Malik A, Wolski E, Eickhoff H, Lehrach H, Herzel H., Nucleic Acids Res. 28(10), 2000
PMID: 10773095
Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cells.
Sheridan GE, Masters CI, Shallcross JA, MacKey BM., Appl. Environ. Microbiol. 64(4), 1998
PMID: 9546166
Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays.
Small J, Call DR, Brockman FJ, Straub TM, Chandler DP., Appl. Environ. Microbiol. 67(10), 2001
PMID: 11571176
The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG., Nucleic Acids Res. 25(24), 1997
PMID: 9396791
Hybridisation based DNA screening on peptide nucleic acid (PNA) oligomer arrays.
Weiler J, Gausepohl H, Hauser N, Jensen ON, Hoheisel JD., Nucleic Acids Res. 25(14), 1997
PMID: 9207026
Maximization of signal derived from cDNA microarrays.
Wildsmith SE, Archer GE, Winkley AJ, Lane PW, Bugelski PJ., BioTechniques 30(1), 2001
PMID: 11196312
Ribotyping of lactobacilli isolated from spoiled beer.
Yansanjav A, Svec P, Sedlacek I, Hollerova I, Nemec M., FEMS Microbiol. Lett. 229(1), 2003
PMID: 14659554
DNA analysis and diagnostics on oligonucleotide microchips.
Yershov G, Barsky V, Belgovskiy A, Kirillov E, Kreindlin E, Ivanov I, Parinov S, Guschin D, Drobishev A, Dubiley S, Mirzabekov A., Proc. Natl. Acad. Sci. U.S.A. 93(10), 1996
PMID: 8643503
DNA recovery from soils of diverse composition.
Zhou J, Bruns MA, Tiedje JM., Appl. Environ. Microbiol. 62(2), 1996
PMID: 8593035
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18785882
PubMed | Europe PMC

Suchen in

Google Scholar