Pathway identification combining metabolic flux and functional genomics analyses: Acetate and propionate activation by Corynebacterium glutamicum

Veit A, Rittmann D, Georgi T, Youn J-W, Eikmanns BJ, Wendisch VF (2009)
Journal of Biotechnology 140(1-2): 75-83.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Veit, A.; Rittmann, D.; Georgi, T.; Youn, Jung-WonUniBi; Eikmanns, B. J.; Wendisch, Volker F.UniBi
Abstract / Bemerkung
Corynebacterium glutamicum call utilize acetic acid and propionic acid for growth and amino acid production. Growth on acetate as sole carbon source requires acetate activation by acetate kinase (AK) and phosphotransacetylase (PTA), encoded in the pta-ack operon. Genetic and enzymatic Studies, showed that these enzymes also catalyze propionate activation and were required for growth oil propionate as sole carbon source. However, when glucose was present as a co-substrate Strain lacking the AK-PTA pathway was still able to utilize acetate or propionate for growth indicating that an alternative activation pathway exists. As shown by C-13-labelling experiments, the carbon skeleton of acetate is conserved during activation to acetyl-CoA in this pathway. Metabolic flux analysis during growth on an acetate-glucose Mixture revealed that in the absence of the AK-PTA pathway carbon fluxes in glycolysis, the tricarboxylic acid (TCA) cycle and anaplerosis via PEP carboxylase and/or pyruvate carboxylase were increased, while the glyoxylate cycle flux was decreased. DNA microarray experiments identified cg2840 as a constitutively and highly expressed gene putatively encoding a CoA transferase. Purified His-tagged Cg2840 Protein was active as CoA transferase interconverting acetyl-, propionyl- and succinyl-moieties as CoA acceptors and donors. Strains lacking both the CoA transferase and the AK-PTA pathway could neither activate acetate nor propionate in the presence or absence of glucose. Thus, when these short-chain fatty acids are co-metabolized with other carbon Sources, CoA transferase and the AK-PTA pathway constitute a redundant system for activation of acetate and propionate. (C) 2008 Elsevier B.V. All rights reserved.
Stichworte
clostridium-kluyveri; carbon-flux; biochemical-characterization; escherichia-coli; nuclear-magnetic-resonance; bidirectional reaction steps; coa transferase; acetate activation; propionate activation; corynebacterium glutamicum; amino acid production; expression analysis; sequence-analysis; isocitrate lyase; lysine production
Erscheinungsjahr
2009
Zeitschriftentitel
Journal of Biotechnology
Band
140
Ausgabe
1-2
Seite(n)
75-83
ISSN
0168-1656
Page URI
https://pub.uni-bielefeld.de/record/1895306

Zitieren

Veit A, Rittmann D, Georgi T, Youn J-W, Eikmanns BJ, Wendisch VF. Pathway identification combining metabolic flux and functional genomics analyses: Acetate and propionate activation by Corynebacterium glutamicum. Journal of Biotechnology. 2009;140(1-2):75-83.
Veit, A., Rittmann, D., Georgi, T., Youn, J. - W., Eikmanns, B. J., & Wendisch, V. F. (2009). Pathway identification combining metabolic flux and functional genomics analyses: Acetate and propionate activation by Corynebacterium glutamicum. Journal of Biotechnology, 140(1-2), 75-83. https://doi.org/10.1016/j.jbiotec.2008.12.014
Veit, A., Rittmann, D., Georgi, T., Youn, Jung-Won, Eikmanns, B. J., and Wendisch, Volker F. 2009. “Pathway identification combining metabolic flux and functional genomics analyses: Acetate and propionate activation by Corynebacterium glutamicum”. Journal of Biotechnology 140 (1-2): 75-83.
Veit, A., Rittmann, D., Georgi, T., Youn, J. - W., Eikmanns, B. J., and Wendisch, V. F. (2009). Pathway identification combining metabolic flux and functional genomics analyses: Acetate and propionate activation by Corynebacterium glutamicum. Journal of Biotechnology 140, 75-83.
Veit, A., et al., 2009. Pathway identification combining metabolic flux and functional genomics analyses: Acetate and propionate activation by Corynebacterium glutamicum. Journal of Biotechnology, 140(1-2), p 75-83.
A. Veit, et al., “Pathway identification combining metabolic flux and functional genomics analyses: Acetate and propionate activation by Corynebacterium glutamicum”, Journal of Biotechnology, vol. 140, 2009, pp. 75-83.
Veit, A., Rittmann, D., Georgi, T., Youn, J.-W., Eikmanns, B.J., Wendisch, V.F.: Pathway identification combining metabolic flux and functional genomics analyses: Acetate and propionate activation by Corynebacterium glutamicum. Journal of Biotechnology. 140, 75-83 (2009).
Veit, A., Rittmann, D., Georgi, T., Youn, Jung-Won, Eikmanns, B. J., and Wendisch, Volker F. “Pathway identification combining metabolic flux and functional genomics analyses: Acetate and propionate activation by Corynebacterium glutamicum”. Journal of Biotechnology 140.1-2 (2009): 75-83.

13 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Efficient Production of the Dicarboxylic Acid Glutarate by Corynebacterium glutamicum via a Novel Synthetic Pathway.
Pérez-García F, Jorge JMP, Dreyszas A, Risse JM, Wendisch VF., Front Microbiol 9(), 2018
PMID: 30425699
Acetate Dissimilation and Assimilation in Mycobacterium tuberculosis Depend on Carbon Availability.
Rücker N, Billig S, Bücker R, Jahn D, Wittmann C, Bange FC., J Bacteriol 197(19), 2015
PMID: 26216844
Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production.
Peters-Wendisch P, Götker S, Heider SA, Komati Reddy G, Nguyen AQ, Stansen KC, Wendisch VF., J Biotechnol 192 Pt B(), 2014
PMID: 24486440
Quantitative mass spectrometry reveals plasticity of metabolic networks in Mycobacterium smegmatis.
Chopra T, Hamelin R, Armand F, Chiappe D, Moniatte M, McKinney JD., Mol Cell Proteomics 13(11), 2014
PMID: 24997995
Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum.
Litsanov B, Kabus A, Brocker M, Bott M., Microb Biotechnol 5(1), 2012
PMID: 22018023
Engineering Corynebacterium glutamicum for the production of pyruvate.
Wieschalka S, Blombach B, Eikmanns BJ., Appl Microbiol Biotechnol 94(2), 2012
PMID: 22228312
Recent advances in mapping environmental microbial metabolisms through 13C isotopic fingerprints.
Tang JK, You L, Blankenship RE, Tang YJ., J R Soc Interface 9(76), 2012
PMID: 22896564

62 References

Daten bereitgestellt von Europe PubMed Central.

Ethanol catabolism in Corynebacterium glutamicum.
Arndt A, Auchter M, Ishige T, Wendisch VF, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 15(4), 2007
PMID: 17693703
Regulation of carbon metabolism in Corynebacterium glutamicum
Arndt, 2008
Towards a phosphoproteome map of Corynebacterium glutamicum.
Bendt AK, Burkovski A, Schaffer S, Bott M, Farwick M, Hermann T., Proteomics 3(8), 2003
PMID: 12923788
Corynebacterium glutamicum tailored for high-yield L-valine production.
Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ., Appl. Microbiol. Biotechnol. 79(3), 2008
PMID: 18379776
L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum.
Blombach B, Schreiner ME, Holatko J, Bartek T, Oldiges M, Eikmanns BJ., Appl. Environ. Microbiol. 73(7), 2007
PMID: 17293513
Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum.
Blombach B, Schreiner ME, Moch M, Oldiges M, Eikmanns BJ., Appl. Microbiol. Biotechnol. 76(3), 2007
PMID: 17333167
Cloning of the dapA dapB cluster of the lysine-secreting bacterium Corynebacterium glutamicum
Cremer, Mol. Gen. Genet. 220(), 1990
Modified carbon flux during oxygen limited growth of Corynebacterium glutamicum and the consequences for amino acid overproduction
Dominguez, Biotechnol. Lett. 15(), 1993
Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose.
Dominguez H, Rollin C, Guyonvarch A, Guerquin-Kern JL, Cocaign-Bousquet M, Lindley ND., Eur. J. Biochem. 254(1), 1998
PMID: 9652400
Carrier-mediated acetate uptake in Corynebacterium glutamicum
Ebbighausen, Arch. Microbiol. 155(), 1991
Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains.
Eikmanns BJ, Metzger M, Reinscheid D, Kircher M, Sahm H., Appl. Microbiol. Biotechnol. 34(5), 1991
PMID: 1369320
Cloning of genes responsible for acetic acid resistance in Acetobacter aceti.
Fukaya M, Takemura H, Okumura H, Kawamura Y, Horinouchi S, Beppu T., J. Bacteriol. 172(4), 1990
PMID: 2156811
Acetate metabolism and its regulation in Corynebacterium glutamicum.
Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ., J. Biotechnol. 104(1-3), 2003
PMID: 12948633
Determination of serum proteins by means of the biuret reaction.
GORNALL AG, BARDAWILL CJ, DAVID MM., J. Biol. Chem. 177(2), 1949
PMID: 18110453
The prpE gene of Salmonella typhimurium LT2 encodes propionyl-CoA synthetase.
Horswill AR, Escalante-Semerena JC., Microbiology (Reading, Engl.) 145 ( Pt 6)(), 1999
PMID: 10411265
The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses.
Ishige T, Krause M, Bott M, Wendisch VF, Sahm H., J. Bacteriol. 185(15), 2003
PMID: 12867461
Construction and application of new Corynebacterium glutamicum vectors
Jakoby, Biotechnol. Tech. 13(), 1999

AUTHOR UNKNOWN, 0
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Glutamic acid
Kinoshita, 1972
Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of L-valine.
Lange C, Rittmann D, Wendisch VF, Bott M, Sahm H., Appl. Environ. Microbiol. 69(5), 2003
PMID: 12732517
Dissimilatory pathways for sugars, polyols and carboxylates
Lin, 1996
Vanillate metabolism in Corynebacterium glutamicum.
Merkens H, Beckers G, Wirtz A, Burkovski A., Curr. Microbiol. 51(1), 2005
PMID: 15971090
Cometabolism of a nongrowth substrate: L-serine utilization by Corynebacterium glutamicum.
Netzer R, Peters-Wendisch P, Eggeling L, Sahm H., Appl. Environ. Microbiol. 70(12), 2004
PMID: 15574911
Phosphoenolpyruvate carboxylase in Corynebacterium glutamicum is dispensable for growth and lysine production
Peters-Wendisch, FEMS Microbiol. Lett. 112(), 1993
Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays.
Polen T, Wendisch VF., Appl. Biochem. Biotechnol. 118(1-3), 2004
PMID: 15304751
Phosphotransacetylase from Bacillus subtilis: purification and physiological studies.
Rado TA, Hoch JA., Biochim. Biophys. Acta 321(1), 1973
PMID: 4201530
Malate synthase from Corynebacterium glutamicum: sequence analysis of the gene and biochemical characterization of the enzyme.
Reinscheid DJ, Eikmanns BJ, Sahm H., Microbiology (Reading, Engl.) 140 ( Pt 11)(), 1994
PMID: 7812449
Cloning, sequence analysis, expression and inactivation of the Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase and acetate kinase.
Reinscheid DJ, Schnicke S, Rittmann D, Zahnow U, Sahm H, Eikmanns BJ., Microbiology (Reading, Engl.) 145 ( Pt 2)(), 1999
PMID: 10075432
Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production.
Riedel C, Rittmann D, Dangel P, Mockel B, Petersen S, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(4), 2001
PMID: 11565516

Sambrook, 2001
A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum.
Schaffer S, Weil B, Nguyen VD, Dongmann G, Gunther K, Nickolaus M, Hermann T, Bott M., Electrophoresis 22(20), 2001
PMID: 11824608
Concerted inhibition and its reversal by end products of aspartate kinase in Brevibacterium flavum
Shiio, J. Biochem. (Tokyo) 65(), 1969
Production of Glutamate and Glutamate-Related Amino Acids: MolecularMechanism Analysis and Metabolic Engineering
Shimizu, 2007
Phosphotransacetylase from Clostridium kluyveri
Stadtman, 1955
Isolation and identification of (−)-methylcitric acid and 2-methyl-cis-aconitic acid from the culture of Candida lipolytica
Tabuchi, Agric. Biol. Chem. 38(), 1974
Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria.
Textor S, Wendisch VF, De Graaf AA, Muller U, Linder MI, Linder D, Buckel W., Arch. Microbiol. 168(5), 1997
PMID: 9325432
Genetic regulation of Corynebacterium glutamicum metabolism
Wendisch, J. Microbiol. Biotechnol. 16(), 2006
Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes.
Wendisch VF, Spies M, Reinscheid DJ, Schnicke S, Sahm H, Eikmanns BJ., Arch. Microbiol. 168(4), 1997
PMID: 9297462
Bidirectional reaction steps in metabolic networks: II. Flux estimation and statistical analysis.
Wiechert W, Siefke C, de Graaf AA, Marx A., Biotechnol. Bioeng. 55(1), 1997
PMID: 18636450
The l-Lysine Story: From Metabolic Pathways to Industrial Production
Wittmann, 2007
Analyses of the acetate-producing pathways in Corynebacterium glutamicum under oxygen-deprived conditions.
Yasuda K, Jojima T, Suda M, Okino S, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 77(4), 2007
PMID: 17909785
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19162097
PubMed | Europe PMC

Suchen in

Google Scholar