Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation

Veit A, Polen T, Wendisch VF (2007)
Applied Microbiology and Biotechnology 74(2): 406-421.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Veit, A.; Polen, T.; Wendisch, Volker F.UniBi
Abstract / Bemerkung
During aerobic growth on glucose, Escherichia coli produces acetate in the so-called overflow metabolism. DNA microarray analysis was used to determine the global gene expression patterns of chemostat cultivations of E. coli MG1655 that were characterized by different acetate formation rates during aerobic growth on glucose. A correlation analysis identified that expression of ten genes (sdhCDAB, sucB, sucC, acnB, lpdA, fumC and mdh) encoding the TCA cycle enzymes succinate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinyl-CoA synthetase, aconitase, fumarase and malate dehydrogenase, respectively, and of the acs-yjcH-actP operon for acetate utilization correlated negatively with acetate formation. Relieving transcriptional control of the sdhCDAB-b0725-sucABCD operon by chromosomal promoter exchange mutagenesis yielded a strain with increased specific activities of the TCA cycle enzymes succinate dehydrogenase, alpha-ketoglutarate dehydrogenase and succinyl-CoA synthetase, which are encoded by this operon. The resulting strain produced less acetate and directed more carbon towards carbon dioxide formation than the parent strain MG1655 while maintaining high growth and glucose consumption rates.
coenzyme-a synthetase; succinic acid production; alpha-ketoglutarate dehydrogenase; acetate switch; chemostat cultivation; DNA microarray; global gene expression analysis; overflow metabolism; tca cycle; aerobic acetate formation; escherichia coli mg1655; catabolite repression; amino-acids; corynebacterium-glutamicum; pyruvate-carboxylase; recombinant protein; microbial-production; acetyl-coenzyme
Applied Microbiology and Biotechnology
Page URI


Veit A, Polen T, Wendisch VF. Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation. Applied Microbiology and Biotechnology. 2007;74(2):406-421.
Veit, A., Polen, T., & Wendisch, V. F. (2007). Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation. Applied Microbiology and Biotechnology, 74(2), 406-421.
Veit, A., Polen, T., and Wendisch, Volker F. 2007. “Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation”. Applied Microbiology and Biotechnology 74 (2): 406-421.
Veit, A., Polen, T., and Wendisch, V. F. (2007). Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation. Applied Microbiology and Biotechnology 74, 406-421.
Veit, A., Polen, T., & Wendisch, V.F., 2007. Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation. Applied Microbiology and Biotechnology, 74(2), p 406-421.
A. Veit, T. Polen, and V.F. Wendisch, “Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation”, Applied Microbiology and Biotechnology, vol. 74, 2007, pp. 406-421.
Veit, A., Polen, T., Wendisch, V.F.: Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation. Applied Microbiology and Biotechnology. 74, 406-421 (2007).
Veit, A., Polen, T., and Wendisch, Volker F. “Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation”. Applied Microbiology and Biotechnology 74.2 (2007): 406-421.

40 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Strain engineering to reduce acetate accumulation during microaerobic growth conditions in Escherichia coli.
Veeravalli K, Schindler T, Dong E, Yamada M, Hamilton R, Laird MW., Biotechnol Prog 34(2), 2018
PMID: 29193870
Efficient Production of the Dicarboxylic Acid Glutarate by Corynebacterium glutamicum via a Novel Synthetic Pathway.
Pérez-García F, Jorge JMP, Dreyszas A, Risse JM, Wendisch VF., Front Microbiol 9(), 2018
PMID: 30425699
Effects of Kasugamycin on the Translatome of Escherichia coli.
Lange C, Lehr M, Zerulla K, Ludwig P, Schweitzer J, Polen T, Wendisch VF, Soppa J., PLoS One 12(1), 2017
PMID: 28081129
Caffeic acid production by simultaneous saccharification and fermentation of kraft pulp using recombinant Escherichia coli.
Kawaguchi H, Katsuyama Y, Danyao D, Kahar P, Nakamura-Tsuruta S, Teramura H, Wakai K, Yoshihara K, Minami H, Ogino C, Ohnishi Y, Kondo A., Appl Microbiol Biotechnol 101(13), 2017
PMID: 28396925
Expanding Upon Styrene Biosynthesis to Engineer a Novel Route to 2-Phenylethanol.
Machas MS, McKenna R, Nielsen DR., Biotechnol J 12(10), 2017
PMID: 28799719
Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.
Pérez-García F, Peters-Wendisch P, Wendisch VF., Appl Microbiol Biotechnol 100(18), 2016
PMID: 27345060
Role of L-alanine for redox self-sufficient amination of alcohols.
Klatte S, Wendisch VF., Microb Cell Fact 14(), 2015
PMID: 25612558
Guiding bioprocess design by microbial ecology.
Volmer J, Schmid A, Bühler B., Curr Opin Microbiol 25(), 2015
PMID: 25835154
Acetate Dissimilation and Assimilation in Mycobacterium tuberculosis Depend on Carbon Availability.
Rücker N, Billig S, Bücker R, Jahn D, Wittmann C, Bange FC., J Bacteriol 197(19), 2015
PMID: 26216844
Overflow metabolism in Escherichia coli results from efficient proteome allocation.
Basan M, Hui S, Okano H, Zhang Z, Shen Y, Williamson JR, Hwa T., Nature 528(7580), 2015
PMID: 26632588
Coordinated activation of PTA-ACS and TCA cycles strongly reduces overflow metabolism of acetate in Escherichia coli.
Peebo K, Valgepea K, Nahku R, Riis G, Oun M, Adamberg K, Vilu R., Appl Microbiol Biotechnol 98(11), 2014
PMID: 24633370
Aerobic expression of Vitreoscilla hemoglobin efficiently reduces overflow metabolism in Escherichia coli.
Pablos TE, Sigala JC, Le Borgne S, Lara AR., Biotechnol J 9(6), 2014
PMID: 24677798
Pyruvate-associated acid resistance in bacteria.
Wu J, Li Y, Cai Z, Jin Y., Appl Environ Microbiol 80(14), 2014
PMID: 24795365
Proteome-wide subcellular topologies of E. coli polypeptides database (STEPdb).
Orfanoudaki G, Economou A., Mol Cell Proteomics 13(12), 2014
PMID: 25210196
Subtoxic product levels limit the epoxidation capacity of recombinant E. coli by increasing microbial energy demands.
Kuhn D, Fritzsch FS, Zhang X, Wendisch VF, Blank LM, Bühler B, Schmid A., J Biotechnol 163(2), 2013
PMID: 22922011
A role for EIIA(Ntr) in controlling fluxes in the central metabolism of E. coli K12.
Jahn S, Haverkorn van Rijsewijk BR, Sauer U, Bettenbrock K., Biochim Biophys Acta 1833(12), 2013
PMID: 23886628
Single step, rapid identification of pathogenic microorganisms in a culture bottle.
Chu YW, Wang BY, Engebretson DA, Carey JR., Analyst 138(20), 2013
PMID: 23905164
Integrating gene and protein expression data with genome-scale metabolic networks to infer functional pathways.
Pey J, Valgepea K, Rubio A, Beasley JE, Planes FJ., BMC Syst Biol 7(), 2013
PMID: 24314206
Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation.
Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron AD, Alston M, Stringer MF, Betts RP, Baranyi J, Peck MW, Hinton JC., J Bacteriol 194(3), 2012
PMID: 22139505
Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters.
Adadi R, Volkmer B, Milo R, Heinemann M, Shlomi T., PLoS Comput Biol 8(7), 2012
PMID: 22792053
Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms.
Paczia N, Nilgen A, Lehmann T, Gätgens J, Wiechert W, Noack S., Microb Cell Fact 11(), 2012
PMID: 22963408
Rapid identification of bacteria with a disposable colorimetric sensing array.
Carey JR, Suslick KS, Hulkower KI, Imlay JA, Imlay KR, Ingison CK, Ponder JB, Sen A, Wittrig AE., J Am Chem Soc 133(19), 2011
PMID: 21524080
Economics of membrane occupancy and respiro-fermentation.
Zhuang K, Vemuri GN, Mahadevan R., Mol Syst Biol 7(), 2011
PMID: 21694717
Effects of sugar addition in Luria Bertani (LB) media on Escherichia coli O157:H7
Medina MB, Uknalis J, Tu SI., Journal of food safety. 31(3), 2011
PMID: IND44611792
Redox biocatalysis and metabolism: molecular mechanisms and metabolic network analysis.
Blank LM, Ebert BE, Buehler K, Bühler B., Antioxid Redox Signal 13(3), 2010
PMID: 20059399
Genetic basis of growth adaptation of Escherichia coli after deletion of pgi, a major metabolic gene.
Charusanti P, Conrad TM, Knight EM, Venkataraman K, Fong NL, Xie B, Gao Y, Palsson BØ., PLoS Genet 6(11), 2010
PMID: 21079674
Proteome analysis of the Escherichia coli heat shock response under steady-state conditions.
Lüders S, Fallet C, Franco-Lara E., Proteome Sci 7(), 2009
PMID: 19772559
E Unibus Plurum: genomic analysis of an experimentally evolved polymorphism in Escherichia coli.
Kinnersley MA, Holben WE, Rosenzweig F., PLoS Genet 5(11), 2009
PMID: 19893610
NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain.
Bühler B, Park JB, Blank LM, Schmid A., Appl Environ Microbiol 74(5), 2008
PMID: 18192422
Growth of Yersinia pseudotuberculosis in human plasma: impacts on virulence and metabolic gene expression.
Rosso ML, Chauvaux S, Dessein R, Laurans C, Frangeul L, Lacroix C, Schiavo A, Dillies MA, Foulon J, Coppée JY, Médigue C, Carniel E, Simonet M, Marceau M., BMC Microbiol 8(), 2008
PMID: 19055764
Response of fluxome and metabolome to temperature-induced recombinant protein synthesis in Escherichia coli.
Wittmann C, Weber J, Betiku E, Krömer J, Böhm D, Rinas U., J Biotechnol 132(4), 2007
PMID: 17689798

96 References

Daten bereitgestellt von Europe PubMed Central.

Avoiding acetate accumulation in Escherichia coli cultures using feedback control of glucose feeding.
Akesson M, Hagander P, Axelsson JP., Biotechnol. Bioeng. 73(3), 2001
PMID: 11257604
Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli.
Altaras NE, Cameron DC., Appl. Environ. Microbiol. 65(3), 1999
PMID: 10049880
Regulation of alpha-ketoglutarate dehydrogenase formation in Escherichia coli.
Amarasingham CR, Davis BD., J. Biol. Chem. 240(9), 1965
PMID: 5319784
Global gene expression profiling in Escherichia coli K12. The effects of integration host factor.
Arfin SM, Long AD, Ito ET, Tolleri L, Riehle MM, Paegle ES, Hatfield GW., J. Biol. Chem. 275(38), 2000
PMID: 10871608
Metabolic engineering for microbial production of aromatic amino acids and derived compounds.
Bongaerts J, Kramer M, Muller U, Raeven L, Wubbolts M., Metab. Eng. 3(4), 2001
PMID: 11676565
The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli.
Brown TD, Jones-Mortimer MC, Kornberg HL., J. Gen. Microbiol. 102(2), 1977
PMID: 21941
Homofermentative production of D- or L-lactate in metabolically engineered Escherichia coli RR1.
Chang DE, Jung HC, Rhee JS, Pan JG., Appl. Environ. Microbiol. 65(4), 1999
PMID: 10103226
High-level recombinant protein production by overexpression of Mlc in Escherichia coli.
Cho S, Shin D, Ji GE, Heu S, Ryu S., J. Biotechnol. 119(2), 2005
PMID: 15916829

SN, Proc Natl Acad Sci USA 70(), 1973

L, Microbiology 144(Pt 8), 1998

KA, Proc Natl Acad Sci USA 97(), 2000
The threonine story.
Debabov VG., Adv. Biochem. Eng. Biotechnol. 79(), 2003
PMID: 12523390
Effect of alteration of the acetic acid synthesis pathway on the fermentation pattern of escherichia coli.
Diaz-Ricci JC, Regan L, Bailey JE., Biotechnol. Bioeng. 38(11), 1991
PMID: 18600733
Reduction of aerobic acetate production by Escherichia coli.
Farmer WR, Liao JC., Appl. Environ. Microbiol. 63(8), 1997
PMID: 9251207
Escherichia coli acid resistance: tales of an amateur acidophile.
Foster JW., Nat. Rev. Microbiol. 2(11), 2004
PMID: 15494746
The gene yjcG, cotranscribed with the gene acs, encodes an acetate permease in Escherichia coli.
Gimenez R, Nunez MF, Badia J, Aguilar J, Baldoma L., J. Bacteriol. 185(21), 2003
PMID: 14563880
Transcriptome analysis of Crp-dependent catabolite control of gene expression in Escherichia coli.
Gosset G, Zhang Z, Nayyar S, Cuevas WA, Saier MH Jr., J. Bacteriol. 186(11), 2004
PMID: 15150239
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Regulation of pyruvate dehydrogenase activity in Escherichia coli K12.
Hansen HG, Henning U., Biochim. Biophys. Acta 122(2), 1966
PMID: 4291045
Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS.
Hommais F, Krin E, Laurent-Winter C, Soutourina O, Malpertuy A, Le Caer JP, Danchin A, Bertin P., Mol. Microbiol. 40(1), 2001
PMID: 11298273

AB, Proc Natl Acad Sci USA 97(), 2000
Escherichia coli spotted double-strand DNA microarrays: RNA extraction, labeling, hybridization, quality control, and data management.
Khodursky AB, Bernstein JA, Peter BJ, Rhodius V, Wendisch VF, Zimmer DP., Methods Mol. Biol. 224(), 2003
PMID: 12710666
Acetate and formate stress: opposite responses in the proteome of Escherichia coli.
Kirkpatrick C, Maurer LM, Oyelakin NE, Yoncheva YN, Maurer R, Slonczewski JL., J. Bacteriol. 183(21), 2001
PMID: 11591692
Metabolic engineering for microbial production of shikimic acid.
Kramer M, Bongaerts J, Bovenberg R, Kremer S, Muller U, Orf S, Wubbolts M, Raeven L., Metab. Eng. 5(4), 2003
PMID: 14642355
Bacterial response to acetate challenge: a comparison of tolerance among species.
Lasko DR, Zamboni N, Sauer U., Appl. Microbiol. Biotechnol. 54(2), 2000
PMID: 10968640
LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli.
Lehnen D, Blumer C, Polen T, Wackwitz B, Wendisch VF, Unden G., Mol. Microbiol. 45(2), 2002
PMID: 12123461
Global transcriptional programs reveal a carbon source foraging strategy by Escherichia coli.
Liu M, Durfee T, Cabrera JE, Zhao K, Jin DJ, Blattner FR., J. Biol. Chem. 280(16), 2005
PMID: 15705577
Simple constrained-optimization view of acetate overflow in E. coli.
Majewski RA, Domach MM., Biotechnol. Bioeng. 35(7), 1990
PMID: 18592570
Pearson correlation analysis of microarray data allows for the identification of genetic targets for early B-cell factor.
Mansson R, Tsapogas P, Akerlund M, Lagergren A, Gisler R, Sigvardsson M., J. Biol. Chem. 279(17), 2004
PMID: 14960572
pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12.
Maurer LM, Yohannes E, Bondurant SS, Radmacher M, Slonczewski JL., J. Bacteriol. 187(1), 2005
PMID: 15601715


FC, 1996
Preclinical manufacture of an anti-HER2 scFv-PEG-DSPE, liposome-inserting conjugate. 1. Gram-scale production and purification.
Nellis DF, Ekstrom DL, Kirpotin DB, Zhu J, Andersson R, Broadt TL, Ouellette TF, Perkins SC, Roach JM, Drummond DC, Hong K, Marks JD, Park JW, Giardina SL., Biotechnol. Prog. 21(1), 2005
PMID: 15903260
Benzene-free synthesis of adipic acid.
Niu W, Draths KM, Frost JW., Biotechnol. Prog. 18(2), 2002
PMID: 11934286
Global expression profiling of acetate-grown Escherichia coli.
Oh MK, Rohlin L, Kao KC, Liao JC., J. Biol. Chem. 277(15), 2002
PMID: 11815613
Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays.
Polen T, Wendisch VF., Appl. Biochem. Biotechnol. 118(1-3), 2004
PMID: 15304751
DNA microarray analyses of the long-term adaptive response of Escherichia coli to acetate and propionate.
Polen T, Rittmann D, Wendisch VF, Sahm H., Appl. Environ. Microbiol. 69(3), 2003
PMID: 12620868
The global gene expression response of Escherichia coli to L-phenylalanine.
Polen T, Kramer M, Bongaerts J, Wubbolts M, Wendisch VF., J. Biotechnol. 115(3), 2004
PMID: 15639085
Impact of genomic technologies on studies of bacterial gene expression.
Rhodius V, Van Dyk TK, Gross C, LaRossa RA., Annu. Rev. Microbiol. 56(), 2002
PMID: 12142487

U, Appl Microbiol Biotechnol 31(), 1989
RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions.
Salgado H, Gama-Castro S, Peralta-Gil M, Diaz-Peredo E, Sanchez-Solano F, Santos-Zavaleta A, Martinez-Flores I, Jimenez-Jacinto V, Bonavides-Martinez C, Segura-Salazar J, Martinez-Antonio A, Collado-Vides J., Nucleic Acids Res. 34(Database issue), 2006
PMID: 16381895

J, 2001
Regulation of bacterial motility in response to low pH in Escherichia coli: the role of H-NS protein.
Soutourina OA, Krin E, Laurent-Winter C, Hommais F, Danchin A, Bertin PN., Microbiology (Reading, Engl.) 148(Pt 5), 2002
PMID: 11988529
Isolation and properties of fumarate reductase mutants of Escherichia coli.
Spencer ME, Guest JR., J. Bacteriol. 114(2), 1973
PMID: 4574693
Advances in Escherichia coli production of therapeutic proteins.
Swartz JR., Curr. Opin. Biotechnol. 12(2), 2001
PMID: 11287237
Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media.
Tao H, Bausch C, Richmond C, Blattner FR, Conway T., J. Bacteriol. 181(20), 1999
PMID: 10515934
Genetic changes to optimize carbon partitioning between ethanol and biosynthesis in ethanologenic Escherichia coli.
Underwood SA, Zhou S, Causey TB, Yomano LP, Shanmugam KT, Ingram LO., Appl. Environ. Microbiol. 68(12), 2002
PMID: 12450851

K, Proc Natl Acad Sci USA 82(), 1985
Citrate synthases: allosteric regulation and molecular size.
Weitzman PD, Dunmore P., Biochim. Biophys. Acta 171(1), 1969
PMID: 4303198
Isolation of Escherichia coli mRNA and comparison of expression using mRNA and total RNA on DNA microarrays.
Wendisch VF, Zimmer DP, Khodursky A, Peter B, Cozzarelli N, Kustu S., Anal. Biochem. 290(2), 2001
PMID: 11237321
The acetate switch.
Wolfe AJ., Microbiol. Mol. Biol. Rev. 69(1), 2005
PMID: 15755952
Glucose overflow metabolism and mixed-acid fermentation in aerobic large-scale fed-batch processes with Escherichia coli.
Xu B, Jahic M, Blomsten G, Enfors SO., Appl. Microbiol. Biotechnol. 51(5), 1999
PMID: 10390814
Modeling of overflow metabolism in batch and fed-batch cultures of Escherichia coli.
Xu B, Jahic M, Enfors SO., Biotechnol. Prog. 15(1), 1999
PMID: 9933517
DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide.
Zheng M, Wang X, Templeton LJ, Smulski DR, LaRossa RA, Storz G., J. Bacteriol. 183(15), 2001
PMID: 11443091
Identification of the CRP regulon using in vitro and in vivo transcriptional profiling.
Zheng D, Constantinidou C, Hobman JL, Minchin SD., Nucleic Acids Res. 32(19), 2004
PMID: 15520470
Production of optically pure D-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110.
Zhou S, Causey TB, Hasona A, Shanmugam KT, Ingram LO., Appl. Environ. Microbiol. 69(1), 2003
PMID: 12514021

DP, Proc Natl Acad Sci USA 97(), 2000

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 17273855
PubMed | Europe PMC

Suchen in

Google Scholar