Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria

Textor S, Wendisch VF, DeGraaf A, Muller U, Linder MI, Linder D, Buckel W (1997)
Archives of Microbiology 168(5): 428-436.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Textor, S.; Wendisch, Volker F.UniBi ; DeGraaf, A.; Muller, U.; Linder, M. I.; Linder, D.; Buckel, W.
Abstract / Bemerkung
Escherichia coli grew in a minimal medium on propionate as the sole carbon and energy source, Initially a lag phase of 4-7 days was observed. Cells adapted to propionate still required 1-2 days before growth commenced. Incorporation of (2-C-13), (3-C-13) or (H-2(3))propionate into alanine revealed by NMR that propionate was oxidized to pyruvate without randomisation of the carbon skeleton and excluded pathways in which the methyl group was transiently converted to a methylene group. Extracts of propionate-grown cells contained a specific enzyme that catalyses the condensation of propionyl-CoA with oxaloacetate, most probably to methylcitrate. The enzyme was purified and identified as the already-known citrate synthase II. By 2-D gel electrophoresis, the formation of a second propionate-specific enzyme with sequence similarities to isocitrate lyases was detected. The genes of both enzymes were located in a putative operon with high identities (at least 76% on the protein level) with the very recently discovered prp operon from Salmonella typhimurium. The results indicate that E. coli oxidises propionate to pyruvate via the methylcitrate cycle known from yeast. The C-13 patterns of aspartate and glutamate are consistent with the further oxidation of pyruvate to acetyl-CoA. Oxaloacetate is predominantly generated via the glyoxylate cycle rather than by carboxylation of phosphoenolpyruvate.
Stichworte
pathways; synthase; identification; purification; anaerobic-bacteria; (r)-2-hydroxyglutaryl-coa dehydratase; acidaminococcus-fermentans; clostridium-propionicum; corynebacterium-glutamicum; propionate oxidation; escherichia coli; 13c and 2h-labeling; glyoxylate cycle; methylcitrate cycle; gene
Erscheinungsjahr
1997
Zeitschriftentitel
Archives of Microbiology
Band
168
Ausgabe
5
Seite(n)
428-436
ISSN
0302-8933
Page URI
https://pub.uni-bielefeld.de/record/1895291

Zitieren

Textor S, Wendisch VF, DeGraaf A, et al. Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria. Archives of Microbiology. 1997;168(5):428-436.
Textor, S., Wendisch, V. F., DeGraaf, A., Muller, U., Linder, M. I., Linder, D., & Buckel, W. (1997). Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria. Archives of Microbiology, 168(5), 428-436. https://doi.org/10.1007/s002030050518
Textor, S., Wendisch, Volker F., DeGraaf, A., Muller, U., Linder, M. I., Linder, D., and Buckel, W. 1997. “Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria”. Archives of Microbiology 168 (5): 428-436.
Textor, S., Wendisch, V. F., DeGraaf, A., Muller, U., Linder, M. I., Linder, D., and Buckel, W. (1997). Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria. Archives of Microbiology 168, 428-436.
Textor, S., et al., 1997. Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria. Archives of Microbiology, 168(5), p 428-436.
S. Textor, et al., “Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria”, Archives of Microbiology, vol. 168, 1997, pp. 428-436.
Textor, S., Wendisch, V.F., DeGraaf, A., Muller, U., Linder, M.I., Linder, D., Buckel, W.: Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria. Archives of Microbiology. 168, 428-436 (1997).
Textor, S., Wendisch, Volker F., DeGraaf, A., Muller, U., Linder, M. I., Linder, D., and Buckel, W. “Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria”. Archives of Microbiology 168.5 (1997): 428-436.

103 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Day and Night: Metabolic Profiles and Evolutionary Relationships of Six Axenic Non-Marine Cyanobacteria.
Will SE, Henke P, Boedeker C, Huang S, Brinkmann H, Rohde M, Jarek M, Friedl T, Seufert S, Schumacher M, Overmann J, Neumann-Schaal M, Petersen J., Genome Biol Evol 11(1), 2019
PMID: 30590650
Segregational Drift and the Interplay between Plasmid Copy Number and Evolvability.
Ilhan J, Kupczok A, Woehle C, Wein T, Hülter NF, Rosenstiel P, Landan G, Mizrahi I, Dagan T., Mol Biol Evol 36(3), 2019
PMID: 30517696
Reporting Key Features in Cold-Adapted Bacteria.
Tribelli PM, López NI., Life (Basel) 8(1), 2018
PMID: 29534000
Metagenomic insights into the roles of Proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats.
Moon CD, Young W, Maclean PH, Cookson AL, Bermingham EN., Microbiologyopen 7(5), 2018
PMID: 29911322
Genome-Guided Characterization of Ochrobactrum sp. POC9 Enhancing Sewage Sludge Utilization-Biotechnological Potential and Biosafety Considerations.
Poszytek K, Karczewska-Golec J, Ciok A, Decewicz P, Dziurzynski M, Gorecki A, Jakusz G, Krucon T, Lomza P, Romaniuk K, Styczynski M, Yang Z, Drewniak L, Dziewit L., Int J Environ Res Public Health 15(7), 2018
PMID: 30013002
Investigation on the anaerobic propionate degradation by Escherichia coli K12.
Simonte FM, Dötsch A, Galego L, Arraiano C, Gescher J., Mol Microbiol 103(1), 2017
PMID: 27671713
Tunable recombinant protein expression in E. coli: promoter systems and genetic constraints.
Marschall L, Sagmeister P, Herwig C., Appl Microbiol Biotechnol 101(2), 2017
PMID: 27999902
Structure and function of seed storage proteins in faba bean (Vicia faba L.).
Liu Y, Wu X, Hou W, Li P, Sha W, Tian Y., 3 Biotech 7(1), 2017
PMID: 28452019
Lifestyle-determining extrachromosomal replicon pAMV1 and its contribution to the carbon metabolism of the methylotrophic bacterium Paracoccus aminovorans JCM 7685.
Czarnecki J, Dziewit L, Puzyna M, Prochwicz E, Tudek A, Wibberg D, Schlüter A, Pühler A, Bartosik D., Environ Microbiol 19(11), 2017
PMID: 28856785
Phloroglucinol functions as an intracellular and intercellular chemical messenger influencing gene expression in Pseudomonas protegens.
Clifford JC, Buchanan A, Vining O, Kidarsa TA, Chang JH, McPhail KL, Loper JE., Environ Microbiol 18(10), 2016
PMID: 26337778
Production of 3-Hydroxypropionic Acid via the Propionyl-CoA Pathway Using Recombinant Escherichia coli Strains.
Luo H, Zhou D, Liu X, Nie Z, Quiroga-Sánchez DL, Chang Y., PLoS One 11(5), 2016
PMID: 27227837
Towards an effective biosensor for monitoring AD leachate: a knockout E. coli mutant that cannot catabolise lactate.
Sweeney J, Murphy CD, McDonnell K., Appl Microbiol Biotechnol 99(23), 2015
PMID: 26272093
Insights into the microbial degradation of rubber and gutta-percha by analysis of the complete genome of Nocardia nova SH22a.
Luo Q, Hiessl S, Poehlein A, Daniel R, Steinbüchel A., Appl Environ Microbiol 80(13), 2014
PMID: 24747905
Acs is essential for propionate utilization in Escherichia coli.
Liu F, Gu J, Wang X, Zhang XE, Deng J., Biochem Biophys Res Commun 449(3), 2014
PMID: 24835953
A large genomic island allows Neisseria meningitidis to utilize propionic acid, with implications for colonization of the human nasopharynx.
Catenazzi MC, Jones H, Wallace I, Clifton J, Chong JP, Jackson MA, Macdonald S, Edwards J, Moir JW., Mol Microbiol 93(2), 2014
PMID: 24910087
Quantitative mass spectrometry reveals plasticity of metabolic networks in Mycobacterium smegmatis.
Chopra T, Hamelin R, Armand F, Chiappe D, Moniatte M, McKinney JD., Mol Cell Proteomics 13(11), 2014
PMID: 24997995
Degradation of the acyl side chain of the steroid compound cholate in Pseudomonas sp. strain Chol1 proceeds via an aldehyde intermediate.
Holert J, Kulić Ž, Yücel O, Suvekbala V, Suter MJ, Möller HM, Philipp B., J Bacteriol 195(3), 2013
PMID: 23204454
Reward for Bdellovibrio bacteriovorus for preying on a polyhydroxyalkanoate producer.
Martínez V, Jurkevitch E, García JL, Prieto MA., Environ Microbiol 15(4), 2013
PMID: 23227863
Isocitrate lyase encoding plasmids in BCG cause increased survival in ApoB100-only LDLR-/- mice.
Szabo AM, Endresz V, Somogyvari F, Miczak A, Faludi I., Mol Biol Rep 40(8), 2013
PMID: 23653002
Gene identification and functional analysis of methylcitrate synthase in citric acid-producing Aspergillus niger WU-2223L.
Kobayashi K, Hattori T, Honda Y, Kirimura K., Biosci Biotechnol Biochem 77(7), 2013
PMID: 23832368
Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations.
Griffin JE, Pandey AK, Gilmore SA, Mizrahi V, McKinney JD, Bertozzi CR, Sassetti CM., Chem Biol 19(2), 2012
PMID: 22365605
An oxygenase that forms and deoxygenates toxic epoxide.
Teufel R, Friedrich T, Fuchs G., Nature 483(7389), 2012
PMID: 22398448
Methods and options for the heterologous production of complex natural products.
Zhang H, Boghigian BA, Armando J, Pfeifer BA., Nat Prod Rep 28(1), 2011
PMID: 21060956
Growth of Pseudomonas putida at low temperature: global transcriptomic and proteomic analyses.
Fonseca P, Moreno R, Rojo F., Environ Microbiol Rep 3(3), 2011
PMID: 23761279
Gene acquisition, duplication and metabolic specification: the evolution of fungal methylisocitrate lyases.
Müller S, Fleck CB, Wilson D, Hummert C, Hube B, Brock M., Environ Microbiol 13(6), 2011
PMID: 21453403
In Salmonella enterica, 2-methylcitrate blocks gluconeogenesis.
Rocco CJ, Escalante-Semerena JC., J Bacteriol 192(3), 2010
PMID: 19948794
Profiling human gut bacterial metabolism and its kinetics using [U-13C]glucose and NMR.
de Graaf AA, Maathuis A, de Waard P, Deutz NE, Dijkema C, de Vos WM, Venema K., NMR Biomed 23(1), 2010
PMID: 19593762
Pathway identification combining metabolic flux and functional genomics analyses: acetate and propionate activation by Corynebacterium glutamicum.
Veit A, Rittmann D, Georgi T, Youn JW, Eikmanns BJ, Wendisch VF., J Biotechnol 140(1-2), 2009
PMID: 19162097
Crystal structure and putative mechanism of 3-methylitaconate-delta-isomerase from Eubacterium barkeri.
Velarde M, Macieira S, Hilberg M, Bröker G, Tu SM, Golding BT, Pierik AJ, Buckel W, Messerschmidt A., J Mol Biol 391(3), 2009
PMID: 19559030
An asymmetric model for Na+-translocating glutaconyl-CoA decarboxylases.
Kress D, Brügel D, Schall I, Linder D, Buckel W, Essen LO., J Biol Chem 284(41), 2009
PMID: 19654317
Functional comparison of citrate synthase isoforms from S. cerevisiae.
Graybill ER, Rouhier MF, Kirby CE, Hawes JW., Arch Biochem Biophys 465(1), 2007
PMID: 17570335
Occurrence and expression of tricarboxylate synthases in Ralstonia eutropha.
Ewering C, Brämer CO, Bruland N, Bethke A, Steinbüchel A., Appl Microbiol Biotechnol 71(1), 2006
PMID: 16133321
Carbon metabolism of intracellular bacteria.
Muñoz-Elías EJ, McKinney JD., Cell Microbiol 8(1), 2006
PMID: 16367862
Propionate-regulated high-yield protein production in Escherichia coli.
Lee SK, Keasling JD., Biotechnol Bioeng 93(5), 2006
PMID: 16333863
Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence.
Muñoz-Elías EJ, Upton AM, Cherian J, McKinney JD., Mol Microbiol 60(5), 2006
PMID: 16689789
Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis.
Gould TA, van de Langemheen H, Muñoz-Elías EJ, McKinney JD, Sacchettini JC., Mol Microbiol 61(4), 2006
PMID: 16879647
Metabolic engineering of Pseudomonas putida for methylmalonyl-CoA biosynthesis to enable complex heterologous secondary metabolite formation.
Gross F, Ring MW, Perlova O, Fu J, Schneider S, Gerth K, Kuhlmann S, Stewart AF, Zhang Y, Müller R., Chem Biol 13(12), 2006
PMID: 17185221
Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria.
Güven D, Dapena A, Kartal B, Schmid MC, Maas B, van de Pas-Schoonen K, Sozen S, Mendez R, Op den Camp HJ, Jetten MS, Strous M, Schmidt I., Appl Environ Microbiol 71(2), 2005
PMID: 15691967
Citrate synthase mutants of Agrobacterium are attenuated in virulence and display reduced vir gene induction.
Suksomtip M, Liu P, Anderson T, Tungpradabkul S, Wood DW, Nester EW., J Bacteriol 187(14), 2005
PMID: 15995199
A propionate-inducible expression system for enteric bacteria.
Lee SK, Keasling JD., Appl Environ Microbiol 71(11), 2005
PMID: 16269719
Stabilisation of methylene radicals by cob(II)alamin in coenzyme B12 dependent mutases.
Buckel W, Kratky C, Golding BT., Chemistry 12(2), 2005
PMID: 16304645
The influence of reduced oxygen availability on pathogenicity and gene expression in Mycobacterium tuberculosis.
Bacon J, James BW, Wernisch L, Williams A, Morley KA, Hatch GJ, Mangan JA, Hinds J, Stoker NG, Butcher PD, Marsh PD., Tuberculosis (Edinb) 84(3-4), 2004
PMID: 15207490
On the mechanism of action of the antifungal agent propionate.
Brock M, Buckel W., Eur J Biochem 271(15), 2004
PMID: 15265042
Role of alpha-methylacyl coenzyme A racemase in the degradation of methyl-branched alkanes by Mycobacterium sp. strain P101.
Sakai Y, Takahashi H, Wakasa Y, Kotani T, Yurimoto H, Miyachi N, Van Veldhoven PP, Kato N., J Bacteriol 186(21), 2004
PMID: 15489432
Biodegradation of bis(1-chloro-2-propyl) ether via initial ether scission and subsequent dehalogenation by Rhodococcus sp. strain DTB.
Moreno Horn M, Garbe LA, Tressl R, Adrian L, Görisch H., Arch Microbiol 179(4), 2003
PMID: 12605291
DNA microarray analyses of the long-term adaptive response of Escherichia coli to acetate and propionate.
Polen T, Rittmann D, Wendisch VF, Sahm H., Appl Environ Microbiol 69(3), 2003
PMID: 12620868
Crystal structure of 2-methylisocitrate lyase (PrpB) from Escherichia coli and modelling of its ligand bound active centre.
Grimm C, Evers A, Brock M, Maerker C, Klebe G, Buckel W, Reuter K., J Mol Biol 328(3), 2003
PMID: 12706720
Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of L-valine.
Lange C, Rittmann D, Wendisch VF, Bott M, Sahm H., Appl Environ Microbiol 69(5), 2003
PMID: 12732517
Residues C123 and D58 of the 2-methylisocitrate lyase (PrpB) enzyme of Salmonella enterica are essential for catalysis.
Grimek TL, Holden H, Rayment I, Escalante-Semerena JC., J Bacteriol 185(16), 2003
PMID: 12897003
Acetate metabolism and its regulation in Corynebacterium glutamicum.
Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ., J Biotechnol 104(1-3), 2003
PMID: 12948633
Crystal structure of Salmonella typhimurium 2-methylisocitrate lyase (PrpB) and its complex with pyruvate and Mg(2+).
Simanshu DK, Satheshkumar PS, Savithri HS, Murthy MR., Biochem Biophys Res Commun 311(1), 2003
PMID: 14575713
The glyoxylate bypass of Ralstonia eutropha.
Wang ZX, Brämer CO, Steinbüchel A., FEMS Microbiol Lett 228(1), 2003
PMID: 14612238
Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source.
Hüser AT, Becker A, Brune I, Dondrup M, Kalinowski J, Plassmeier J, Pühler A, Wiegräbe I, Tauch A., J Biotechnol 106(2-3), 2003
PMID: 14651867
Oxidation of propionate to pyruvate in Escherichia coli. Involvement of methylcitrate dehydratase and aconitase.
Brock M, Maerker C, Schütz A, Völker U, Buckel W., Eur J Biochem 269(24), 2002
PMID: 12473114
Genome-wide responses to mitochondrial dysfunction.
Epstein CB, Waddle JA, Hale W, Davé V, Thornton J, Macatee TL, Garner HR, Butow RA., Mol Biol Cell 12(2), 2001
PMID: 11179416
Studies of propionate toxicity in Salmonella enterica identify 2-methylcitrate as a potent inhibitor of cell growth.
Horswill AR, Dudding AR, Escalante-Semerena JC., J Biol Chem 276(22), 2001
PMID: 11376009
Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei.
de Bok FA, Stams AJ, Dijkema C, Boone DR., Appl Environ Microbiol 67(4), 2001
PMID: 11282636
Methylcitrate synthase from Aspergillus nidulans: implications for propionate as an antifungal agent.
Brock M, Fischer R, Linder D, Buckel W., Mol Microbiol 35(5), 2000
PMID: 10712680
The Saccharomyces cerevisiae ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme A metabolism.
Luttik MA, Kötter P, Salomons FA, van der Klei IJ, van Dijken JP, Pronk JT., J Bacteriol 182(24), 2000
PMID: 11092862
Carbon-13 nuclear magnetic resonance study of metabolism of propionate by Escherichia coli.
London RE, Allen DL, Gabel SA, DeRose EF., J Bacteriol 181(11), 1999
PMID: 10348870
Salmonella typhimurium LT2 catabolizes propionate via the 2-methylcitric acid cycle.
Horswill AR, Escalante-Semerena JC., J Bacteriol 181(18), 1999
PMID: 10482501
2-hydroxyglutaryl-CoA dehydratase from Clostridium symbiosum.
Hans M, Sievers J, Müller U, Bill E, Vorholt JA, Linder D, Buckel W., Eur J Biochem 265(1), 1999
PMID: 10491198
Biochemical and spectroscopic characterization of Escherichia coli aconitases (AcnA and AcnB).
Jordan PA, Tang Y, Bradbury AJ, Thomson AJ, Guest JR., Biochem J 344 Pt 3(), 1999
PMID: 10585860
Linkage map of Escherichia coli K-12, edition 10: the traditional map.
Berlyn MK., Microbiol Mol Biol Rev 62(3), 1998
PMID: 9729611

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 9325432
PubMed | Europe PMC

Suchen in

Google Scholar