Phosphate starvation-inducible gene ushA encodes a 5 ' nucleotidase required for growth of Corynebacterium glutamicum on media with nucleotides as the phosphorus source

Rittmann D, Sorger-Herrmann U, Wendisch VF (2005)
Applied and Environmental Microbiology 71(8): 4339-4344.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Rittmann, D.; Sorger-Herrmann, U.; Wendisch, Volker F.UniBi
Abstract / Bemerkung
Phosphorus is an essential component of macromolecules, like DNA, and central metabolic intermediates, such as sugar phosphates, and bacteria possess enzymes and control mechanisms that provide an optimal supply of phosphorus from the environment. UDP-sugar hydrolases and 5' nucleotidases may play roles in signal transduction, as they do in mammals, in nucleotide salvage, as demonstrated for UshA of Escherichia coli, or in phosphorus metabolism. The Corynebacterium glutamicum gene ushA was found to encode a secreted enzyme which is active as a 5' nucleotidase and a UDP-sugar hydrolase. This enzyme was synthesized and secreted into the medium when C. glutamicum was starved for inorganic phosphate. UshA was required for growth of C. glutamicum on AMP and UDP-glucose as sole sources of phosphorus. Thus, in contrast to UshA from E. coli, C. glutamicum UshA is an important component of the phosphate starvation response of this species and is necessary to access nucleotides and related compounds as sources of phosphorus.
Stichworte
sequence; cloning; expression; transcriptional analysis; molecular analysis; salmonella-enterica; escherichia-coli; transformation; promoters; plasmids
Erscheinungsjahr
2005
Zeitschriftentitel
Applied and Environmental Microbiology
Band
71
Ausgabe
8
Seite(n)
4339-4344
ISSN
0099-2240
Page URI
https://pub.uni-bielefeld.de/record/1895255

Zitieren

Rittmann D, Sorger-Herrmann U, Wendisch VF. Phosphate starvation-inducible gene ushA encodes a 5 ' nucleotidase required for growth of Corynebacterium glutamicum on media with nucleotides as the phosphorus source. Applied and Environmental Microbiology. 2005;71(8):4339-4344.
Rittmann, D., Sorger-Herrmann, U., & Wendisch, V. F. (2005). Phosphate starvation-inducible gene ushA encodes a 5 ' nucleotidase required for growth of Corynebacterium glutamicum on media with nucleotides as the phosphorus source. Applied and Environmental Microbiology, 71(8), 4339-4344. https://doi.org/10.1128/Aem.71.8.4339-4344.2005
Rittmann, D., Sorger-Herrmann, U., and Wendisch, Volker F. 2005. “Phosphate starvation-inducible gene ushA encodes a 5 ' nucleotidase required for growth of Corynebacterium glutamicum on media with nucleotides as the phosphorus source”. Applied and Environmental Microbiology 71 (8): 4339-4344.
Rittmann, D., Sorger-Herrmann, U., and Wendisch, V. F. (2005). Phosphate starvation-inducible gene ushA encodes a 5 ' nucleotidase required for growth of Corynebacterium glutamicum on media with nucleotides as the phosphorus source. Applied and Environmental Microbiology 71, 4339-4344.
Rittmann, D., Sorger-Herrmann, U., & Wendisch, V.F., 2005. Phosphate starvation-inducible gene ushA encodes a 5 ' nucleotidase required for growth of Corynebacterium glutamicum on media with nucleotides as the phosphorus source. Applied and Environmental Microbiology, 71(8), p 4339-4344.
D. Rittmann, U. Sorger-Herrmann, and V.F. Wendisch, “Phosphate starvation-inducible gene ushA encodes a 5 ' nucleotidase required for growth of Corynebacterium glutamicum on media with nucleotides as the phosphorus source”, Applied and Environmental Microbiology, vol. 71, 2005, pp. 4339-4344.
Rittmann, D., Sorger-Herrmann, U., Wendisch, V.F.: Phosphate starvation-inducible gene ushA encodes a 5 ' nucleotidase required for growth of Corynebacterium glutamicum on media with nucleotides as the phosphorus source. Applied and Environmental Microbiology. 71, 4339-4344 (2005).
Rittmann, D., Sorger-Herrmann, U., and Wendisch, Volker F. “Phosphate starvation-inducible gene ushA encodes a 5 ' nucleotidase required for growth of Corynebacterium glutamicum on media with nucleotides as the phosphorus source”. Applied and Environmental Microbiology 71.8 (2005): 4339-4344.

22 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Oxidative Pathways of Deoxyribose and Deoxyribonate Catabolism.
Price MN, Ray J, Iavarone AT, Carlson HK, Ryan EM, Malmstrom RR, Arkin AP, Deutschbauer AM., mSystems 4(1), 2019
PMID: 30746495
GlnR positive transcriptional regulation of the phosphate-specific transport system pstSCAB in Amycolatopsis mediterranei U32.
Zhang Y, Zhang Y, Li P, Wang Y, Wang J, Shao Z, Zhao G., Acta Biochim Biophys Sin (Shanghai) 50(8), 2018
PMID: 30007316
Comparative genomic, proteomic and exoproteomic analyses of three Pseudomonas strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria.
Lidbury ID, Murphy AR, Scanlan DJ, Bending GD, Jones AM, Moore JD, Goodall A, Hammond JP, Wellington EM., Environ Microbiol 18(10), 2016
PMID: 27233093
A Positive Selection for Nucleoside Kinases in E. coli.
Shelat NY, Parhi S, Ostermeier M., PLoS One 11(9), 2016
PMID: 27677184
Regulation of the pstSCAB operon in Corynebacterium glutamicum by the regulator of acetate metabolism RamB.
Sorger-Herrmann U, Taniguchi H, Wendisch VF., BMC Microbiol 15(), 2015
PMID: 26021728
Complete proteome of a quinolone-resistant Salmonella Typhimurium phage type DT104B clinical strain.
Correia S, Nunes-Miranda JD, Pinto L, Santos HM, de Toro M, Sáenz Y, Torres C, Capelo JL, Poeta P, Igrejas G., Int J Mol Sci 15(8), 2014
PMID: 25196519
Link between phosphate starvation and glycogen metabolism in Corynebacterium glutamicum, revealed by metabolomics.
Woo HM, Noack S, Seibold GM, Willbold S, Eikmanns BJ, Bott M., Appl Environ Microbiol 76(20), 2010
PMID: 20802079
An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis.
Covington ED, Gelbmann CB, Kotloski NJ, Gralnick JA., Mol Microbiol 78(2), 2010
PMID: 20807196
Phosphate starvation triggers production and secretion of an extracellular lipoprotein in Caulobacter crescentus.
Le Blastier S, Hamels A, Cabeen M, Schille L, Tilquin F, Dieu M, Raes M, Matroule JY., PLoS One 5(12), 2010
PMID: 21152032
Characterization of the LacI-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032.
Nentwich SS, Brinkrolf K, Gaigalat L, Hüser AT, Rey DA, Mohrbach T, Marin K, Pühler A, Tauch A, Kalinowski J., Microbiology 155(pt 1), 2009
PMID: 19118356
Exopolyphosphatases PPX1 and PPX2 from Corynebacterium glutamicum.
Lindner SN, Knebel S, Wesseling H, Schoberth SM, Wendisch VF., Appl Environ Microbiol 75(10), 2009
PMID: 19304823
Utilization of DNA as a sole source of phosphorus, carbon, and energy by Shewanella spp.: ecological and physiological implications for dissimilatory metal reduction.
Pinchuk GE, Ammons C, Culley DE, Li SM, McLean JS, Romine MF, Nealson KH, Fredrickson JK, Beliaev AS., Appl Environ Microbiol 74(4), 2008
PMID: 18156329
The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences.
Brinkrolf K, Plöger S, Solle S, Brune I, Nentwich SS, Hüser AT, Kalinowski J, Pühler A, Tauch A., Microbiology 154(pt 4), 2008
PMID: 18375800
NCgl2620 encodes a class II polyphosphate kinase in Corynebacterium glutamicum.
Lindner SN, Vidaurre D, Willbold S, Schoberth SM, Wendisch VF., Appl Environ Microbiol 73(15), 2007
PMID: 17545325
Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response.
Kocan M, Schaffer S, Ishige T, Sorger-Herrmann U, Wendisch VF, Bott M., J Bacteriol 188(2), 2006
PMID: 16385062

34 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 1973
Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase.
Eikmanns BJ, Thum-Schmitz N, Eggeling L, Ludtke KU, Sahm H., Microbiology (Reading, Engl.) 140 ( Pt 8)(), 1994
PMID: 7522844
Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants.
Grant SG, Jessee J, Bloom FR, Hanahan D., Proc. Natl. Acad. Sci. U.S.A. 87(12), 1990
PMID: 2162051
Ecto-5'-nucleotidase activity is not required for T cell activation through CD73.
Gutensohn W, Resta R, Misumi Y, Ikehara Y, Thompson LF., Cell. Immunol. 161(2), 1995
PMID: 7697732
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791

AUTHOR UNKNOWN, 2002
The cryptic ushA gene (ushA(c)) in natural isolates of Salmonella enterica (serotype Typhimurium) has been inactivated by a single missense mutation.
Innes D, Beacham IR, Beven CA, Douglas M, Laird MW, Joly JC, Burns DM., Microbiology (Reading, Engl.) 147(Pt 7), 2001
PMID: 11429465
The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses.
Ishige T, Krause M, Bott M, Wendisch VF, Sahm H., J. Bacteriol. 185(15), 2003
PMID: 12867461
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626

AUTHOR UNKNOWN, 2002
Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of L-valine.
Lange C, Rittmann D, Wendisch VF, Bott M, Sahm H., Appl. Environ. Microbiol. 69(5), 2003
PMID: 12732517
A novel process of inosine 5'-monophosphate production using overexpressed guanosine/inosine kinase.
Mori H, Iida A, Fujio T, Teshiba S., Appl. Microbiol. Biotechnol. 48(6), 1997
PMID: 9457797

AUTHOR UNKNOWN, 1996
Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif.
Patek M, Eikmanns BJ, Patek J, Sahm H., Microbiology (Reading, Engl.) 142 ( Pt 5)(), 1996
PMID: 8704969
Promoters of Corynebacterium glutamicum.
Patek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G., J. Biotechnol. 104(1-3), 2003
PMID: 12948648

AUTHOR UNKNOWN, 1993

AUTHOR UNKNOWN, 1989
A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum.
Schaffer S, Weil B, Nguyen VD, Dongmann G, Gunther K, Nickolaus M, Hermann T, Bott M., Electrophoresis 22(20), 2001
PMID: 11824608

AUTHOR UNKNOWN, 1996

AUTHOR UNKNOWN, 2005

AUTHOR UNKNOWN, 1996
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 16085822
PubMed | Europe PMC

Suchen in

Google Scholar