Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum

Rittmann D, Lindner S, Wendisch VF (2008)
Applied and Environmental Microbiology 74(20): 6216-6222.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
The amino acid-producing organism Corynebacterium glutamicum cannot utilize glycerol, a stoichiometric by-product of biodiesel production. By heterologous expression of Escherichia coli glycerol utilization genes, C. glutamicum was engineered to grow on glycerol. While expression of the E. coli genes for glycerol kinase (glpK) and glycerol 3-phosphate dehydrogenase (glpD) was sufficient for growth on glycerol as the sole carbon and energy source, additional expression of the aquaglyceroporin gene glpF from E. coli increased growth rate and biomass formation. Glutamate production from glycerol was enabled by plasmid-borne expression of E. coli glpF, glpK, and glpD in C. glutamicum wild type. In addition, a lysine-producing C. glutamicum strain expressing E. coli glpF, glpK, and glpD was able to produce lysine from glycerol as the sole carbon substrate as well as from glycerol-glucose mixtures.
Stichworte
carbon-sources; heterologous expression; lysine production; mycobacterium-tuberculosis; l-alpha-glycerophosphate; clostridium-butyricum; escherichia-coli; metabolic pathway; glutamate production; sugar-transport
Erscheinungsjahr
2008
Zeitschriftentitel
Applied and Environmental Microbiology
Band
74
Ausgabe
20
Seite(n)
6216-6222
ISSN
0099-2240
Page URI
https://pub.uni-bielefeld.de/record/1895242

Zitieren

Rittmann D, Lindner S, Wendisch VF. Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Applied and Environmental Microbiology. 2008;74(20):6216-6222.
Rittmann, D., Lindner, S., & Wendisch, V. F. (2008). Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Applied and Environmental Microbiology, 74(20), 6216-6222. https://doi.org/10.1128/Aem.00963-08
Rittmann, D., Lindner, Steffen, and Wendisch, Volker F. 2008. “Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum”. Applied and Environmental Microbiology 74 (20): 6216-6222.
Rittmann, D., Lindner, S., and Wendisch, V. F. (2008). Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Applied and Environmental Microbiology 74, 6216-6222.
Rittmann, D., Lindner, S., & Wendisch, V.F., 2008. Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Applied and Environmental Microbiology, 74(20), p 6216-6222.
D. Rittmann, S. Lindner, and V.F. Wendisch, “Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum”, Applied and Environmental Microbiology, vol. 74, 2008, pp. 6216-6222.
Rittmann, D., Lindner, S., Wendisch, V.F.: Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Applied and Environmental Microbiology. 74, 6216-6222 (2008).
Rittmann, D., Lindner, Steffen, and Wendisch, Volker F. “Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum”. Applied and Environmental Microbiology 74.20 (2008): 6216-6222.

54 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery.
Baritugo KA, Kim HT, David Y, Choi JI, Hong SH, Jeong KJ, Choi JH, Joo JC, Park SJ., Appl Microbiol Biotechnol 102(9), 2018
PMID: 29557518
Transport and metabolic engineering of the cell factory Corynebacterium glutamicum.
Pérez-García F, Wendisch VF., FEMS Microbiol Lett 365(16), 2018
PMID: 29982619
Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum.
Zhao N, Qian L, Luo G, Zheng S., Appl Microbiol Biotechnol 102(22), 2018
PMID: 30218378
Metabolic profiling of recombinant Escherichia coli cultivations based on high-throughput FT-MIR spectroscopic analysis.
Sales KC, Rosa F, Cunha BR, Sampaio PN, Lopes MB, Calado CRC., Biotechnol Prog 33(2), 2017
PMID: 27696721
Fermentative production of L-pipecolic acid from glucose and alternative carbon sources.
Pérez-García F, Max Risse J, Friehs K, Wendisch VF., Biotechnol J 12(7), 2017
PMID: 28169491
A new genome-scale metabolic model of Corynebacterium glutamicum and its application.
Zhang Y, Cai J, Shang X, Wang B, Liu S, Chai X, Tan T, Zhang Y, Wen T., Biotechnol Biofuels 10(), 2017
PMID: 28680478
Updates on industrial production of amino acids using Corynebacterium glutamicum.
Wendisch VF, Jorge JMP, Pérez-García F, Sgobba E., World J Microbiol Biotechnol 32(6), 2016
PMID: 27116971
Transcription of Sialic Acid Catabolism Genes in Corynebacterium glutamicum Is Subject to Catabolite Repression and Control by the Transcriptional Repressor NanR.
Uhde A, Brühl N, Goldbeck O, Matano C, Gurow O, Rückert C, Marin K, Wendisch VF, Krämer R, Seibold GM., J Bacteriol 198(16), 2016
PMID: 27274030
Corynebacterium glutamicum possesses β-N-acetylglucosaminidase.
Matano C, Kolkenbrock S, Hamer SN, Sgobba E, Moerschbacher BM, Wendisch VF., BMC Microbiol 16(1), 2016
PMID: 27492186
Fermentative production of the diamine putrescine: system metabolic engineering of corynebacterium glutamicum.
Nguyen AQ, Schneider J, Reddy GK, Wendisch VF., Metabolites 5(2), 2015
PMID: 25919117
Ribosome binding site libraries and pathway modules for shikimic acid synthesis with Corynebacterium glutamicum.
Zhang B, Zhou N, Liu YM, Liu C, Lou CB, Jiang CY, Liu SJ., Microb Cell Fact 14(), 2015
PMID: 25981633
Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production.
Peters-Wendisch P, Götker S, Heider SA, Komati Reddy G, Nguyen AQ, Stansen KC, Wendisch VF., J Biotechnol 192 Pt B(), 2014
PMID: 24486440
Metabolic engineering of Corynebacterium glutamicum for glycolate production.
Zahoor A, Otten A, Wendisch VF., J Biotechnol 192 Pt B(), 2014
PMID: 24486442
Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Krämer R, Wendisch VF, Seibold GM., Appl Microbiol Biotechnol 98(12), 2014
PMID: 24668244
Enhancement of glycerol utilization ability of Ralstonia eutropha H16 for production of polyhydroxyalkanoates.
Fukui T, Mukoyama M, Orita I, Nakamura S., Appl Microbiol Biotechnol 98(17), 2014
PMID: 24878751
Optimization of the IPP Precursor Supply for the Production of Lycopene, Decaprenoxanthin and Astaxanthin by Corynebacterium glutamicum.
Heider SA, Wolf N, Hofemeier A, Peters-Wendisch P, Wendisch VF., Front Bioeng Biotechnol 2(), 2014
PMID: 25191655
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2013
PMID: 23164409
Bio-based production of organic acids with Corynebacterium glutamicum.
Wieschalka S, Blombach B, Bott M, Eikmanns BJ., Microb Biotechnol 6(2), 2013
PMID: 23199277
Metabolism of biodiesel-derived glycerol in probiotic Lactobacillus strains.
Rivaldi JD, Sousa Silva M, Duarte LC, Ferreira AE, Cordeiro C, de Almeida Felipe Md, de Ponces Freire A, de Mancilha IM., Appl Microbiol Biotechnol 97(4), 2013
PMID: 23229571
Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum.
Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF., Bioresour Technol 145(), 2013
PMID: 23562176
Fermentation of glycerol and production of valuable chemical and biofuel molecules.
Mattam AJ, Clomburg JM, Gonzalez R, Yazdani SS., Biotechnol Lett 35(6), 2013
PMID: 23690047
Microbial utilization of crude glycerol for the production of value-added products.
Dobson R, Gray V, Rumbold K., J Ind Microbiol Biotechnol 39(2), 2012
PMID: 21948485
Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products.
Zahoor A, Lindner SN, Wendisch VF., Comput Struct Biotechnol J 3(), 2012
PMID: 24688664
Phosphotransferase system-independent glucose utilization in corynebacterium glutamicum by inositol permeases and glucokinases.
Lindner SN, Seibold GM, Henrich A, Krämer R, Wendisch VF., Appl Environ Microbiol 77(11), 2011
PMID: 21478323
Tools for genetic manipulations in Corynebacterium glutamicum and their applications.
Nešvera J, Pátek M., Appl Microbiol Biotechnol 90(5), 2011
PMID: 21519933
Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM., Appl Microbiol Biotechnol 92(5), 2011
PMID: 21796382
Putrescine production by engineered Corynebacterium glutamicum.
Schneider J, Wendisch VF., Appl Microbiol Biotechnol 88(4), 2010
PMID: 20661733
Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production.
Takeno S, Murata R, Kobayashi R, Mitsuhashi S, Ikeda M., Appl Environ Microbiol 76(21), 2010
PMID: 20851994

57 References

Daten bereitgestellt von Europe PubMed Central.

Proteomic analyses of a Listeria monocytogenes mutant lacking sigmaB identify new components of the sigmaB regulon and highlight a role for sigmaB in the utilization of glycerol.
Abram F, Su WL, Wiedmann M, Boor KJ, Coote P, Botting C, Karatzas KA, O'Byrne CP., Appl. Environ. Microbiol. 74(3), 2007
PMID: 18065622
Glycerol metabolism of Lactobacillus rhamnosus ATCC 7469: cloning and expression of two glycerol kinase genes.
Alvarez Mde F, Medina R, Pasteris SE, Strasser de Saad AM, Sesma F., J. Mol. Microbiol. Biotechnol. 7(4), 2004
PMID: 15383715

AUTHOR UNKNOWN, 2008
Microbial production of 1,3-propanediol.
Biebl H, Menzel K, Zeng AP, Deckwer WD., Appl. Microbiol. Biotechnol. 52(3), 1999
PMID: 10531640
Growth stasis by accumulated L-alpha-glycerophosphate in Escherichia coli.
Cozzarelli NR, Koch JP, Hayashi S, Lin EC., J. Bacteriol. 90(5), 1965
PMID: 5321485
How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria.
Deutscher J, Francke C, Postma PW., Microbiol. Mol. Biol. Rev. 70(4), 2006
PMID: 17158705

AUTHOR UNKNOWN, 2002
Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose.
Dominguez H, Rollin C, Guyonvarch A, Guerquin-Kern JL, Cocaign-Bousquet M, Lindley ND., Eur. J. Biochem. 254(1), 1998
PMID: 9652400

AUTHOR UNKNOWN, 2005

AUTHOR UNKNOWN, 2005

AUTHOR UNKNOWN, 2005
Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase.
Eikmanns BJ, Thum-Schmitz N, Eggeling L, Ludtke KU, Sahm H., Microbiology (Reading, Engl.) 140 ( Pt 8)(), 1994
PMID: 7522844
Acetate metabolism and its regulation in Corynebacterium glutamicum.
Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ., J. Biotechnol. 104(1-3), 2003
PMID: 12948633
Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol.
Gonzalez-Pajuelo M, Andrade JC, Vasconcelos I., J. Ind. Microbiol. Biotechnol. 31(9), 2004
PMID: 15378388
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791

AUTHOR UNKNOWN, 1989
The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses.
Ishige T, Krause M, Bott M, Wendisch VF, Sahm H., J. Bacteriol. 185(15), 2003
PMID: 12867461
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum.
Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 77(5), 2007
PMID: 17965859
Engineering of a xylose metabolic pathway in Corynebacterium glutamicum.
Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H., Appl. Environ. Microbiol. 72(5), 2006
PMID: 16672486
The pyruvate requirement of some members of the Mycobacterium tuberculosis complex is due to an inactive pyruvate kinase: implications for in vivo growth.
Keating LA, Wheeler PR, Mansoor H, Inwald JK, Dale J, Hewinson RG, Gordon SV., Mol. Microbiol. 56(1), 2005
PMID: 15773987
Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response.
Kocan M, Schaffer S, Ishige T, Sorger-Herrmann U, Wendisch VF, Bott M., J. Bacteriol. 188(2), 2006
PMID: 16385062
Uptake of glutamate in Corynebacterium glutamicum. 1. Kinetic properties and regulation by internal pH and potassium.
Kramer R, Lambert C, Hoischen C, Ebbighausen H., Eur. J. Biochem. 194(3), 1990
PMID: 1980106
Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation.
Krings E, Krumbach K, Bathe B, Kelle R, Wendisch VF, Sahm H, Eggeling L., J. Bacteriol. 188(23), 2006
PMID: 16997948

AUTHOR UNKNOWN, 2005
Glycerol dissimilation and its regulation in bacteria.
Lin EC., Annu. Rev. Microbiol. 30(), 1976
PMID: 825019
Utilization of L-alpha-glycerophosphate by Escherichia coli without hydrolysis.
LIN EC, KOCH JP, CHUSED TM, JORGENSEN SE., Proc. Natl. Acad. Sci. U.S.A. 48(), 1962
PMID: 13930693

AUTHOR UNKNOWN, 1996

AUTHOR UNKNOWN, 2006
Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032.
Moon MW, Kim HJ, Oh TK, Shin CS, Lee JS, Kim SJ, Lee JK., FEMS Microbiol. Lett. 244(2), 2005
PMID: 15766777
Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals.
Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R., Appl. Environ. Microbiol. 74(4), 2007
PMID: 18156341
Cometabolism of a nongrowth substrate: L-serine utilization by Corynebacterium glutamicum.
Netzer R, Peters-Wendisch P, Eggeling L, Sahm H., Appl. Environ. Microbiol. 70(12), 2004
PMID: 15574911
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586

AUTHOR UNKNOWN, 1995
Metabolic consequences of limited phospholipid synthesis in Escherichia coli.
Pizer LI, Merlie JP, De Leon MP., J. Biol. Chem. 249(10), 1974
PMID: 4275339
Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits L-glutamate efflux of Corynebacterium glutamicum.
Radmacher E, Stansen KC, Besra GS, Alderwick LJ, Maughan WN, Hollweg G, Sahm H, Wendisch VF, Eggeling L., Microbiology (Reading, Engl.) 151(Pt 5), 2005
PMID: 15870446
Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures.
Saint-Amans S, Girbal L, Andrade J, Ahrens K, Soucaille P., J. Bacteriol. 183(5), 2001
PMID: 11160107
Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production.
Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ., J. Biotechnol. 124(2), 2006
PMID: 16488498

AUTHOR UNKNOWN, 2007
Anaerobic growth of Escherichia coli on glycerol by importing genes of the dha regulon from Klebsiella pneumoniae.
Sprenger GA, Hammer BA, Johnson EA, Lin EC., J. Gen. Microbiol. 135(5), 1989
PMID: 2559947
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
A genomic view of sugar transport in Mycobacterium smegmatis and Mycobacterium tuberculosis.
Titgemeyer F, Amon J, Parche S, Mahfoud M, Bail J, Schlicht M, Rehm N, Hillmann D, Stephan J, Walter B, Burkovski A, Niederweis M., J. Bacteriol. 189(16), 2007
PMID: 17557815

AUTHOR UNKNOWN, 2008

AUTHOR UNKNOWN, 2007
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18757581
PubMed | Europe PMC

Suchen in

Google Scholar