Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits L-glutamate efflux of Corynebacterium glutamicum

Radmacher E, Stansen KC, Besra GS, Alderwick LJ, Maughan WN, Hollweg G, Sahm H, Wendisch VF, Eggeling L (2005)
Microbiology-Sgm 151(5): 1359-1368.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Radmacher, E.; Stansen, K. C.; Besra, G. S.; Alderwick, L. J.; Maughan, W. N.; Hollweg, G.; Sahm, H.; Wendisch, Volker F.UniBi ; Eggeling, L.
Abstract / Bemerkung
Corynebacterium glutamicum is used for the large-scale production of L-glutamate, but the efflux of this amino acid is poorly understood. This study shows that addition of ethambutol (EMB) to growing cultures of C. glutamicum causes L-glutamate efflux at rates of up to 15 nmol min(-1) (mg dry wt)(-1), whereas in the absence of EMB, no efflux occurs. EMB is used for the treatment of Mycobacterium tuberculosis, and at a molecular level it targets a series of arabinosyltransferases (EmbCAB). The single arabinosyltransferase-encoding emb gene of C. glutamicum was placed under the control of a Tet repressor (TetR). Experiments with this strain, as well as with an emb-overexpressing strain, coupled with biochemical analyses showed that: (i) emb expression was correlated with L-glutamate efflux, (ii) emb overexpression increased EMB resistance, (iii) EMB caused less arabinan deposition in cell wall arabinogalactan, and (iv) EMB caused a reduced content of cell-wall-bound mycolic acids. Thus EMB addition resulted in a marked disordering of the cell envelope, which was also discernible by examining cellular morphology. In order to further characterize the cellular response to EMB addition, genome-wide expression profiling was performed using DNA microarrays. This identified 76 differentially expressed genes, with 18 of them upregulated more than eightfold. Among these were the cell-wall-related genes ftsE and mepA (encoding a secreted metalloprotease); however, genes of central metabolism were largely absent. Given that an altered lipid composition of the plasma membrane of C. glutamicum can result in L-glutamate efflux, we speculate that major structural alterations of the cell envelope are transmitted to the membrane, which in turn activates an export system, perhaps via increased membrane tension.
Stichworte
DNA microarrays; export; envelope; arabinogalactan; biosynthesis; cloning; escherichia-coli; gene-expression; susceptibility; system
Erscheinungsjahr
2005
Zeitschriftentitel
Microbiology-Sgm
Band
151
Ausgabe
5
Seite(n)
1359-1368
ISSN
1350-0872
eISSN
1465-2080
Page URI
https://pub.uni-bielefeld.de/record/1895230

Zitieren

Radmacher E, Stansen KC, Besra GS, et al. Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits L-glutamate efflux of Corynebacterium glutamicum. Microbiology-Sgm. 2005;151(5):1359-1368.
Radmacher, E., Stansen, K. C., Besra, G. S., Alderwick, L. J., Maughan, W. N., Hollweg, G., Sahm, H., et al. (2005). Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits L-glutamate efflux of Corynebacterium glutamicum. Microbiology-Sgm, 151(5), 1359-1368. https://doi.org/10.1099/mic.0.27804-0
Radmacher, E., Stansen, K. C., Besra, G. S., Alderwick, L. J., Maughan, W. N., Hollweg, G., Sahm, H., Wendisch, Volker F., and Eggeling, L. 2005. “Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits L-glutamate efflux of Corynebacterium glutamicum”. Microbiology-Sgm 151 (5): 1359-1368.
Radmacher, E., Stansen, K. C., Besra, G. S., Alderwick, L. J., Maughan, W. N., Hollweg, G., Sahm, H., Wendisch, V. F., and Eggeling, L. (2005). Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits L-glutamate efflux of Corynebacterium glutamicum. Microbiology-Sgm 151, 1359-1368.
Radmacher, E., et al., 2005. Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits L-glutamate efflux of Corynebacterium glutamicum. Microbiology-Sgm, 151(5), p 1359-1368.
E. Radmacher, et al., “Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits L-glutamate efflux of Corynebacterium glutamicum”, Microbiology-Sgm, vol. 151, 2005, pp. 1359-1368.
Radmacher, E., Stansen, K.C., Besra, G.S., Alderwick, L.J., Maughan, W.N., Hollweg, G., Sahm, H., Wendisch, V.F., Eggeling, L.: Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits L-glutamate efflux of Corynebacterium glutamicum. Microbiology-Sgm. 151, 1359-1368 (2005).
Radmacher, E., Stansen, K. C., Besra, G. S., Alderwick, L. J., Maughan, W. N., Hollweg, G., Sahm, H., Wendisch, Volker F., and Eggeling, L. “Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits L-glutamate efflux of Corynebacterium glutamicum”. Microbiology-Sgm 151.5 (2005): 1359-1368.

50 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The singular Corynebacterium glutamicum Emb arabinofuranosyltransferase polymerises the α(1 → 5) arabinan backbone in the early stages of cell wall arabinan biosynthesis.
Jankute M, Alderwick LJ, Moorey AR, Joe M, Gurcha SS, Eggeling L, Lowary TL, Dell A, Pang PC, Yang T, Haslam S, Besra GS., Cell Surf 2(), 2018
PMID: 30046665
The assessment of changes to the nontuberculous mycobacterial metabolome in response to anti-TB drugs.
Drapal M, Wheeler PR, Fraser PD., FEMS Microbiol Lett 365(15), 2018
PMID: 29945244
Corynebacterium glutamicum mechanosensitive channels: towards unpuzzling "glutamate efflux" for amino acid production.
Nakayama Y, Hashimoto KI, Sawada Y, Sokabe M, Kawasaki H, Martinac B., Biophys Rev 10(5), 2018
PMID: 30209745
The Antituberculosis Drug Ethambutol Selectively Blocks Apical Growth in CMN Group Bacteria.
Schubert K, Sieger B, Meyer F, Giacomelli G, Böhm K, Rieblinger A, Lindenthal L, Sachs N, Wanner G, Bramkamp M., MBio 8(1), 2017
PMID: 28174310
Systems metabolic engineering strategies for the production of amino acids.
Ma Q, Zhang Q, Xu Q, Zhang C, Li Y, Fan X, Xie X, Chen N., Synth Syst Biotechnol 2(2), 2017
PMID: 29062965
Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi).
Cleto S, Jensen JV, Wendisch VF, Lu TK., ACS Synth Biol 5(5), 2016
PMID: 26829286
Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum.
Lubitz D, Wendisch VF., BMC Microbiol 16(1), 2016
PMID: 27717325
Global Transcriptomic Analysis of the Response of Corynebacterium glutamicum to Vanillin.
Chen C, Pan J, Yang X, Guo C, Ding W, Si M, Zhang Y, Shen X, Wang Y., PLoS One 11(10), 2016
PMID: 27760214
Efflux systems in bacteria and their metabolic engineering applications.
Jones CM, Hernández Lozada NJ, Pfleger BF., Appl Microbiol Biotechnol 99(22), 2015
PMID: 26363557
Benzothiazinones mediate killing of Corynebacterineae by blocking decaprenyl phosphate recycling involved in cell wall biosynthesis.
Grover S, Alderwick LJ, Mishra AK, Krumbach K, Marienhagen J, Eggeling L, Bhatt A, Besra GS., J Biol Chem 289(9), 2014
PMID: 24446451
Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production.
Peters-Wendisch P, Götker S, Heider SA, Komati Reddy G, Nguyen AQ, Stansen KC, Wendisch VF., J Biotechnol 192 Pt B(), 2014
PMID: 24486440
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2013
PMID: 23164409
Current knowledge on mycolic acids in Corynebacterium glutamicum and their relevance for biotechnological processes.
Lanéelle MA, Tropis M, Daffé M., Appl Microbiol Biotechnol 97(23), 2013
PMID: 24113823
Biotin protein ligase from Corynebacterium glutamicum: role for growth and L: -lysine production.
Peters-Wendisch P, Stansen KC, Götker S, Wendisch VF., Appl Microbiol Biotechnol 93(6), 2012
PMID: 22159614
Characterization of the biotin uptake system encoded by the biotin-inducible bioYMN operon of Corynebacterium glutamicum.
Schneider J, Peters-Wendisch P, Stansen KC, Götker S, Maximow S, Krämer R, Wendisch VF., BMC Microbiol 12(), 2012
PMID: 22243621
Mycobacterium tuberculosis expresses ftsE gene through multiple transcripts.
Roy S, Vijay S, Arumugam M, Anand D, Mir M, Ajitkumar P., Curr Microbiol 62(5), 2011
PMID: 21336990
Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM., Appl Microbiol Biotechnol 92(5), 2011
PMID: 21796382
Requirement of de novo synthesis of the OdhI protein in penicillin-induced glutamate production by Corynebacterium glutamicum.
Kim J, Fukuda H, Hirasawa T, Nagahisa K, Nagai K, Wachi M, Shimizu H., Appl Microbiol Biotechnol 86(3), 2010
PMID: 19956942
Effect of odhA overexpression and odhA antisense RNA expression on Tween-40-triggered glutamate production by Corynebacterium glutamicum.
Kim J, Hirasawa T, Sato Y, Nagahisa K, Furusawa C, Shimizu H., Appl Microbiol Biotechnol 81(6), 2009
PMID: 18923827
Expression and localization of the Corynebacterium glutamicum NCgl1221 protein encoding an L-glutamic acid exporter.
Yao W, Deng X, Liu M, Zheng P, Sun Z, Zhang Y., Microbiol Res 164(6), 2009
PMID: 19233628
Double deletion of dtsR1 and pyc induce efficient L: -glutamate overproduction in Corynebacterium glutamicum.
Yao W, Deng X, Zhong H, Liu M, Zheng P, Sun Z, Zhang Y., J Ind Microbiol Biotechnol 36(7), 2009
PMID: 19408028
A cell-based screening system for detection of inhibitors toward mycobacterial cell wall core.
Gao P, Guan Y, Song D, Xiao C., J Antibiot (Tokyo) 62(6), 2009
PMID: 19444301
Changes in enzyme activities at the pyruvate node in glutamate-overproducing Corynebacterium glutamicum.
Hasegawa T, Hashimoto K, Kawasaki H, Nakamatsu T., J Biosci Bioeng 105(1), 2008
PMID: 18295714
Metabolic regulation and overproduction of primary metabolites.
Sanchez S, Demain AL., Microb Biotechnol 1(4), 2008
PMID: 21261849
Biosynthesis of mycobacterial arabinogalactan: identification of a novel alpha(1-->3) arabinofuranosyltransferase.
Birch HL, Alderwick LJ, Bhatt A, Rittmann D, Krumbach K, Singh A, Bai Y, Lowary TL, Eggeling L, Besra GS., Mol Microbiol 69(5), 2008
PMID: 18627460
Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum.
Rittmann D, Lindner SN, Wendisch VF., Appl Environ Microbiol 74(20), 2008
PMID: 18757581
Cell envelope fluidity modification for an effective glutamate excretion in Corynebacterium glutamicum 2262.
Bokas D, Uy D, Grattepanche F, Duportail G, Guedon E, Delaunay S, Goergen JL., Appl Microbiol Biotechnol 76(4), 2007
PMID: 17619186
Emerging Corynebacterium glutamicum systems biology.
Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W., J Biotechnol 124(1), 2006
PMID: 16406159
Gene expression of Corynebacterium glutamicum in response to the conditions inducing glutamate overproduction.
Kataoka M, Hashimoto KI, Yoshida M, Nakamatsu T, Horinouchi S, Kawasaki H., Lett Appl Microbiol 42(5), 2006
PMID: 16620205
Determination of soluble and granular inorganic polyphosphate in Corynebacterium glutamicum.
Klauth P, Pallerla SR, Vidaurre D, Ralfs C, Wendisch VF, Schoberth SM., Appl Microbiol Biotechnol 72(5), 2006
PMID: 16977467
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl Environ Microbiol 71(10), 2005
PMID: 16204505

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 15870446
PubMed | Europe PMC

Suchen in

Google Scholar