Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays

Polen T, Wendisch VF (2004)
Applied Biochemistry and Biotechnology 118(1-3): 215-232.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
Abstract / Bemerkung
DNA microarray technology has become an important research tool for biotechnology and microbiology. It is now possible to characterize genetic diversity and gene expression in a genomewide manner. DNA microarrays have been applied extensively to study the biology of many bacteria including Escherichia coli, but only recently have they been developed for the Grampositive Corynebacterium glutamicium. Both bacteria are widely used for biotechnological amino acid production. In this article, in addition to the design and generation of microarrays as well as their use in hybridization experiments and subsequent data analysis, we describe recent applications of DNA microarray technology regarding amino acid production in C. glutamicum and E. coli. We also discuss the impact of functional genomics studies on fundamental as well as applied aspects of amino acid production with C. glutamicum and E. coli.
Erscheinungsjahr
Zeitschriftentitel
Applied Biochemistry and Biotechnology
Band
118
Zeitschriftennummer
1-3
Seite
215-232
ISSN
PUB-ID

Zitieren

Polen T, Wendisch VF. Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays. Applied Biochemistry and Biotechnology. 2004;118(1-3):215-232.
Polen, T., & Wendisch, V. F. (2004). Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays. Applied Biochemistry and Biotechnology, 118(1-3), 215-232. doi:10.1385/abab:118:1-3:215
Polen, T., and Wendisch, V. F. (2004). Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays. Applied Biochemistry and Biotechnology 118, 215-232.
Polen, T., & Wendisch, V.F., 2004. Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays. Applied Biochemistry and Biotechnology, 118(1-3), p 215-232.
T. Polen and V.F. Wendisch, “Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays”, Applied Biochemistry and Biotechnology, vol. 118, 2004, pp. 215-232.
Polen, T., Wendisch, V.F.: Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays. Applied Biochemistry and Biotechnology. 118, 215-232 (2004).
Polen, T., and Wendisch, Volker F. “Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays”. Applied Biochemistry and Biotechnology 118.1-3 (2004): 215-232.

38 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Global mRNA decay and 23S rRNA fragmentation in Gluconobacter oxydans 621H.
Kranz A, Steinmann A, Degner U, Mengus-Kaya A, Matamouros S, Bott M, Polen T., BMC Genomics 19(1), 2018
PMID: 30326828
The three-component system EsrISR regulates a cell envelope stress response in Corynebacterium glutamicum.
Kleine B, Chattopadhyay A, Polen T, Pinto D, Mascher T, Bott M, Brocker M, Freudl R., Mol Microbiol 106(5), 2017
PMID: 28922502
Regulons of global transcription factors in Corynebacterium glutamicum.
Toyoda K, Inui M., Appl Microbiol Biotechnol 100(1), 2016
PMID: 26496920
A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria.
Donovan C, Heyer A, Pfeifer E, Polen T, Wittmann A, Krämer R, Frunzke J, Bramkamp M., Nucleic Acids Res 43(10), 2015
PMID: 25916847
Beyond growth rate 0.6: What drives Corynebacterium glutamicum to higher growth rates in defined medium.
Unthan S, Grünberger A, van Ooyen J, Gätgens J, Heinrich J, Paczia N, Wiechert W, Kohlheyer D, Noack S., Biotechnol Bioeng 111(2), 2014
PMID: 23996851
Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction.
Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, van Ooyen J, Bott M., Metab Eng 22(), 2014
PMID: 24333966
Subtilase SprP exerts pleiotropic effects in Pseudomonas aeruginosa.
Pelzer A, Polen T, Funken H, Rosenau F, Wilhelm S, Bott M, Jaeger KE., Microbiologyopen 3(1), 2014
PMID: 24376018
Biotin protein ligase from Corynebacterium glutamicum: role for growth and L: -lysine production.
Peters-Wendisch P, Stansen KC, Götker S, Wendisch VF., Appl Microbiol Biotechnol 93(6), 2012
PMID: 22159614
Improved L-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity.
van Ooyen J, Noack S, Bott M, Reth A, Eggeling L., Biotechnol Bioeng 109(8), 2012
PMID: 22392073
The two-component system ChrSA is crucial for haem tolerance and interferes with HrrSA in haem-dependent gene regulation in Corynebacterium glutamicum.
Heyer A, Gätgens C, Hentschel E, Kalinowski J, Bott M, Frunzke J., Microbiology 158(pt 12), 2012
PMID: 23038807
Control of heme homeostasis in Corynebacterium glutamicum by the two-component system HrrSA.
Frunzke J, Gätgens C, Brocker M, Bott M., J Bacteriol 193(5), 2011
PMID: 21217007
L-Glutamine as a nitrogen source for Corynebacterium glutamicum: derepression of the AmtR regulon and implications for nitrogen sensing.
Rehm N, Georgi T, Hiery E, Degner U, Schmiedl A, Burkovski A, Bott M., Microbiology 156(pt 10), 2010
PMID: 20656783
Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate.
Kato O, Youn JW, Stansen KC, Matsui D, Oikawa T, Wendisch VF., BMC Microbiol 10(), 2010
PMID: 21159175
The serine hydroxymethyltransferase gene glyA in Corynebacterium glutamicum is controlled by GlyR.
Schweitzer JE, Stolz M, Diesveld R, Etterich H, Eggeling L., J Biotechnol 139(3), 2009
PMID: 19124047
Pathway identification combining metabolic flux and functional genomics analyses: acetate and propionate activation by Corynebacterium glutamicum.
Veit A, Rittmann D, Georgi T, Youn JW, Eikmanns BJ, Wendisch VF., J Biotechnol 140(1-2), 2009
PMID: 19162097
Cell growth and cell division in the rod-shaped actinomycete Corynebacterium glutamicum.
Letek M, Fiuza M, Ordóñez E, Villadangos AF, Ramos A, Mateos LM, Gil JA., Antonie Van Leeuwenhoek 94(1), 2008
PMID: 18283557
Population Heterogeneity in Corynebacterium glutamicum ATCC 13032 caused by prophage CGP3.
Frunzke J, Bramkamp M, Schweitzer JE, Bott M., J Bacteriol 190(14), 2008
PMID: 18487330
Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria.
Weber DG, Sahm K, Polen T, Wendisch VF, Antranikian G., J Appl Microbiol 105(4), 2008
PMID: 18785882
FarR, a putative regulator of amino acid metabolism in Corynebacterium glutamicum.
Hänssler E, Müller T, Jessberger N, Völzke A, Plassmeier J, Kalinowski J, Krämer R, Burkovski A., Appl Microbiol Biotechnol 76(3), 2007
PMID: 17483938
Gene expression analysis of Corynebacterium glutamicum subjected to long-term lactic acid adaptation.
Jakob K, Satorhelyi P, Lange C, Wendisch VF, Silakowski B, Scherer S, Neuhaus K., J Bacteriol 189(15), 2007
PMID: 17526706
The global gene expression response of Escherichia coli to L-phenylalanine.
Polen T, Krämer M, Bongaerts J, Wubbolts M, Wendisch VF., J Biotechnol 115(3), 2005
PMID: 15639085
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl Environ Microbiol 71(10), 2005
PMID: 16204505
Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis.
Netzer R, Krause M, Rittmann D, Peters-Wendisch PG, Eggeling L, Wendisch VF, Sahm H., Arch Microbiol 182(5), 2004
PMID: 15375646

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 15304751
PubMed | Europe PMC

Suchen in

Google Scholar