The global gene expression response of Escherichia coli to L-phenylalanine

Polen T, Krämer M, Bongaerts J, Wubbolts M, Wendisch VF (2005)
Journal of Biotechnology 115(3): 221-237.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Polen, T.; Krämer, M.; Bongaerts, J.; Wubbolts, M.; Wendisch, Volker F.UniBi
Abstract / Bemerkung
We investigated the global gene expression changes of Escherichia coli due to the presence of different concentrations of phenylalanine or shikimate in the growth medium. The response to 0.5 g l(-1) phenylalanine primarily reflected a perturbed aromatic amino acid metabolism, in particular due to TyrR-mediated regulation. The addition of 5 g l(-1) phenylalanine reduced the growth rate by half and elicited a great number of likely indirect effects on genes regulated in response to changed pH, nitrogen or carbon availability. Consistent with the observed gene expression changes, supplementation with shikimate, tyrosine and tryptophan relieved growth inhibition by phenylalanine. In contrast to the wild-type, a tyrR disruption strain showed increased expression of pckA and of tktB in the presence of phenylalanine, but its growth was not affected by phenylalanine at the concentrations tested. The absence of growth inhibition by phenylalanine suggested that at high phenylalanine concentrations TyrR-defective strains might perform better in phenylalanine production. (C) 2004 Elsevier B.V. All rights reserved.
transcriptional regulation; biocatalytic synthesis; nucleotide-sequence; microbial-production; regulatory protein; transport-system; DNA microarrays; tyrr protein; aromatic-amino-acids; glutamic-acid decarboxylase; tyrr; shikimate; phenylalanine; escherichia coli; microarray; genomewide expression analysis
Journal of Biotechnology
Page URI


Polen T, Krämer M, Bongaerts J, Wubbolts M, Wendisch VF. The global gene expression response of Escherichia coli to L-phenylalanine. Journal of Biotechnology. 2005;115(3):221-237.
Polen, T., Krämer, M., Bongaerts, J., Wubbolts, M., & Wendisch, V. F. (2005). The global gene expression response of Escherichia coli to L-phenylalanine. Journal of Biotechnology, 115(3), 221-237.
Polen, T., Krämer, M., Bongaerts, J., Wubbolts, M., and Wendisch, Volker F. 2005. “The global gene expression response of Escherichia coli to L-phenylalanine”. Journal of Biotechnology 115 (3): 221-237.
Polen, T., Krämer, M., Bongaerts, J., Wubbolts, M., and Wendisch, V. F. (2005). The global gene expression response of Escherichia coli to L-phenylalanine. Journal of Biotechnology 115, 221-237.
Polen, T., et al., 2005. The global gene expression response of Escherichia coli to L-phenylalanine. Journal of Biotechnology, 115(3), p 221-237.
T. Polen, et al., “The global gene expression response of Escherichia coli to L-phenylalanine”, Journal of Biotechnology, vol. 115, 2005, pp. 221-237.
Polen, T., Krämer, M., Bongaerts, J., Wubbolts, M., Wendisch, V.F.: The global gene expression response of Escherichia coli to L-phenylalanine. Journal of Biotechnology. 115, 221-237 (2005).
Polen, T., Krämer, M., Bongaerts, J., Wubbolts, M., and Wendisch, Volker F. “The global gene expression response of Escherichia coli to L-phenylalanine”. Journal of Biotechnology 115.3 (2005): 221-237.

26 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Genetic engineering of Escherichia coli to improve L-phenylalanine production.
Liu Y, Xu Y, Ding D, Wen J, Zhu B, Zhang D., BMC Biotechnol 18(1), 2018
PMID: 29382315
Designing an Escherichia coli Strain for Phenylalanine Overproduction by Metabolic Engineering.
Tyagi N, Saini D, Guleria R, Mukherjee KJ., Mol Biotechnol 59(4-5), 2017
PMID: 28374116
Screening of an Escherichia coli promoter library for a phenylalanine biosensor.
Mahr R, von Boeselager RF, Wiechert J, Frunzke J., Appl Microbiol Biotechnol 100(15), 2016
PMID: 27170323
Synthesis of chemicals by metabolic engineering of microbes.
Sun X, Shen X, Jain R, Lin Y, Wang J, Sun J, Wang J, Yan Y, Yuan Q., Chem Soc Rev 44(11), 2015
PMID: 25940754
Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds.
Rodriguez A, Martínez JA, Flores N, Escalante A, Gosset G, Bolivar F., Microb Cell Fact 13(1), 2014
PMID: 25200799
Production of salidroside in metabolically engineered Escherichia coli.
Bai Y, Bi H, Zhuang Y, Liu C, Cai T, Liu X, Zhang X, Liu T, Ma Y., Sci Rep 4(), 2014
PMID: 25323006
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2013
PMID: 23164409
Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production.
Chen X, Zhou L, Tian K, Kumar A, Singh S, Prior BA, Wang Z., Biotechnol Adv 31(8), 2013
PMID: 23473968
The expression of stlA in Photorhabdus luminescens is controlled by nutrient limitation.
Lango-Scholey L, Brachmann AO, Bode HB, Clarke DJ., PLoS One 8(11), 2013
PMID: 24278476
Phosphotransferase system-independent glucose utilization in corynebacterium glutamicum by inositol permeases and glucokinases.
Lindner SN, Seibold GM, Henrich A, Krämer R, Wendisch VF., Appl Environ Microbiol 77(11), 2011
PMID: 21478323
Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM., Appl Microbiol Biotechnol 92(5), 2011
PMID: 21796382
Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches.
Cao B, Nagarajan K, Loh KC., Appl Microbiol Biotechnol 85(2), 2009
PMID: 19730850
Transcriptome analysis of a phenol-producing Pseudomonas putida S12 construct: genetic and physiological basis for improved production.
Wierckx NJ, Ballerstedt H, de Bont JA, de Winde JH, Ruijssenaars HJ, Wery J., J Bacteriol 190(8), 2008
PMID: 17993537
Application of systems biology for bioprocess development.
Park JH, Lee SY, Kim TY, Kim HU., Trends Biotechnol 26(8), 2008
PMID: 18582974
L-tyrosine production by deregulated strains of Escherichia coli.
Lütke-Eversloh T, Stephanopoulos G., Appl Microbiol Biotechnol 75(1), 2007
PMID: 17221195
Perspectives of biotechnological production of L-tyrosine and its applications.
Lütke-Eversloh T, Santos CN, Stephanopoulos G., Appl Microbiol Biotechnol 77(4), 2007
PMID: 17968539
DNA microarray technology for the microbiologist: an overview.
Ehrenreich A., Appl Microbiol Biotechnol 73(2), 2006
PMID: 17043830
The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose.
Nijkamp K, van Luijk N, de Bont JA, Wery J., Appl Microbiol Biotechnol 69(2), 2005
PMID: 15824922

93 References

Daten bereitgestellt von Europe PubMed Central.

Global gene expression profiling in Escherichia coli K12. The effects of integration host factor.
Arfin SM, Long AD, Ito ET, Tolleri L, Riehle MM, Paegle ES, Hatfield GW., J. Biol. Chem. 275(38), 2000
PMID: 10871608
Genetic engineering of metabolic pathways applied to the production of phenylalanine.
Backman K, O'Connor MJ, Maruya A, Rudd E, McKay D, Balakrishnan R, Radjai M, DiPasquantonio V, Shoda D, Hatch R., Ann. N. Y. Acad. Sci. 589(), 1990
PMID: 2192656
Metabolic engineering for microbial production of aromatic amino acids and derived compounds.
Bongaerts J, Kramer M, Muller U, Raeven L, Wubbolts M., Metab. Eng. 3(4), 2001
PMID: 11676565
Transcriptional repression of gdhA in Escherichia coli is mediated by the Nac protein.
Camarena L, Poggio S, Garcia N, Osorio A., FEMS Microbiol. Lett. 167(1), 1998
PMID: 9785451
Cloning of the aroP gene and identification of its product in Escherichia coli K-12.
Chye ML, Guest JR, Pittard J., J. Bacteriol. 167(2), 1986
PMID: 3015892
Transcription initiation at the tryptophanase promoter of Escherichia coli K-12.
Deeley MC, Yanofsky C., J. Bacteriol. 151(2), 1982
PMID: 6284718
Identification and removal of impediments to biocatalytic synthesis of aromatics from d-glucose: rate-limiting enzymes in the common pathway of aromatic amino acid biosynthesis
Dell, J. Am. Chem. Soc. 115(), 1993
Exploring the metabolic and genetic control of gene expression on a genomic scale.
DeRisi JL, Iyer VR, Brown PO., Science 278(5338), 1997
PMID: 9381177
Biodegradation of aromatic compounds by Escherichia coli.
Diaz E, Ferrandez A, Prieto MA, Garcia JL., Microbiol. Mol. Biol. Rev. 65(4), 2001
PMID: 11729263
Biocatalytic synthesis of aromatics from d-glucose—the role of transketolase
Draths, J. Am. Chem. Soc. 114(), 1992

Eggeling, 2001
Cluster analysis and display of genome-wide expression patterns.
Eisen MB, Spellman PT, Brown PO, Botstein D., Proc. Natl. Acad. Sci. U.S.A. 95(25), 1998
PMID: 9843981
The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions.
Franke S, Grass G, Nies DH., Microbiology (Reading, Engl.) 147(Pt 4), 2001
PMID: 11283292
Process control for enhanced L-phenylalanine production using different recombinant Escherichia coli strains.
Gerigk M, Bujnicki R, Ganpo-Nkwenkwa E, Bongaerts J, Sprenger G, Takors R., Biotechnol. Bioeng. 80(7), 2002
PMID: 12402320
Developing an l-phenylalanine process
Grinter, ChemTech. (July) (), 1998
Recent insights into the general stress response regulatory network in Escherichia coli.
Hengge-Aronis R., J. Mol. Microbiol. Biotechnol. 4(3), 2002
PMID: 11931567
Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS.
Hommais F, Krin E, Laurent-Winter C, Soutourina O, Malpertuy A, Le Caer JP, Danchin A, Bertin P., Mol. Microbiol. 40(1), 2001
PMID: 11298273
Functional genomics by NMR spectroscopy. Phenylacetate catabolism in Escherichia coli.
Ismail W, El-Said Mohamed M, Wanner BL, Datsenko KA, Eisenreich W, Rohdich F, Bacher A, Fuchs G., Eur. J. Biochem. 270(14), 2003
PMID: 12846838
Transcriptional regulation of tyrosine phenol-lyase gene mediated through TyrR and cAMP receptor protein.
Katayama T, Suzuki H, Yamamoto K, Kumagai H., Biosci. Biotechnol. Biochem. 63(10), 1999
PMID: 10586511
Escherichia coli spotted double-strand DNA microarrays: RNA extraction, labeling, hybridization, quality control, and data management.
Khodursky AB, Bernstein JA, Peter BJ, Rhodius V, Wendisch VF, Zimmer DP., Methods Mol. Biol. 224(), 2003
PMID: 12710666
DNA microarray analysis of gene expression in response to physiological and genetic changes that affect tryptophan metabolism in Escherichia coli.
Khodursky AB, Peter BJ, Cozzarelli NR, Botstein D, Brown PO, Yanofsky C., Proc. Natl. Acad. Sci. U.S.A. 97(22), 2000
PMID: 11027315
Physiologically motivated strategies for control of the fed-batch cultivation of recombinant Escherichia coli for phenylalanine production
Konstantinov, J. Ferm. Bioeng. 71(), 1991
Identification of the LIV-I/LS system as the third phenylalanine transporter in Escherichia coli K-12.
Koyanagi T, Katayama T, Suzuki H, Kumagai H., J. Bacteriol. 186(2), 2004
PMID: 14702302

Metabolic engineering for microbial production of shikimic acid.
Kramer M, Bongaerts J, Bovenberg R, Kremer S, Muller U, Orf S, Wubbolts M, Raeven L., Metab. Eng. 5(4), 2003
PMID: 14642355
Translation activates the paused transcription complex and restores transcription of the trp operon leader region.
Landick R, Carey J, Yanofsky C., Proc. Natl. Acad. Sci. U.S.A. 82(14), 1985
PMID: 2991886
LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli.
Lehnen D, Blumer C, Polen T, Wackwitz B, Wendisch VF, Unden G., Mol. Microbiol. 45(2), 2002
PMID: 12123461
Deletion of pgi alters tryptophan biosynthesis in a genetically engineered strain of Escherichia coli.
Mascarenhas D, Ashworth DJ, Chen CS., Appl. Environ. Microbiol. 57(10), 1991
PMID: 1746959
Regulatory network of acid resistance genes in Escherichia coli.
Masuda N, Church GM., Mol. Microbiol. 48(3), 2003
PMID: 12694615
Lrp is a direct repressor of the dad operon in Escherichia coli.
Mathew E, Zhi J, Freundlich M., J. Bacteriol. 178(24), 1996
PMID: 8955407
Amino acids as carbon sources
McFall, 1996

Miller, 1972

Miller, 1992
Functional properties of Kch, a prokaryotic homologue of eukaryotic potassium channels.
Munsey TS, Mohindra A, Yusaf SP, Grainge A, Wang MH, Wray D, Sivaprasadarao A., Biochem. Biophys. Res. Commun. 297(1), 2002
PMID: 12220501
Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12.
Munson GP, Lam DL, Outten FW, O'Halloran TV., J. Bacteriol. 182(20), 2000
PMID: 11004187

Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12.
Oshima T, Aiba H, Masuda Y, Kanaya S, Sugiura M, Wanner BL, Mori H, Mizuno T., Mol. Microbiol. 46(1), 2002
PMID: 12366850
The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli.
Outten FW, Huffman DL, Hale JA, O'Halloran TV., J. Biol. Chem. 276(33), 2001
PMID: 11399769
Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes.
Paulsen IT, Nguyen L, Sliwinski MK, Rabus R, Saier MH Jr., J. Mol. Biol. 301(1), 2000
PMID: 10926494
Biosynthesis of aromatic amino acids
Pittard, 1996
TyrR protein of Escherichia coli and its role as repressor and activator.
Pittard AJ, Davidson BE., Mol. Microbiol. 5(7), 1991
PMID: 1943694
Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays.
Polen T, Wendisch VF., Appl. Biochem. Biotechnol. 118(1-3), 2004
PMID: 15304751
DNA microarray analyses of the long-term adaptive response of Escherichia coli to acetate and propionate.
Polen T, Rittmann D, Wendisch VF, Sahm H., Appl. Environ. Microbiol. 69(3), 2003
PMID: 12620868
Impact of genomic technologies on studies of bacterial gene expression.
Rhodius V, Van Dyk TK, Gross C, LaRossa RA., Annu. Rev. Microbiol. 56(), 2002
PMID: 12142487
Genome-wide expression profiling in Escherichia coli K-12.
Richmond CS, Glasner JD, Mau R, Jin H, Blattner FR., Nucleic Acids Res. 27(19), 1999
PMID: 10481021

Sambrook, 1989
A new family of integral membrane proteins involved in transport of aromatic amino acids in Escherichia coli.
Sarsero JP, Wookey PJ, Gollnick P, Yanofsky C, Pittard AJ., J. Bacteriol. 173(10), 1991
PMID: 2022620
Quantitative monitoring of gene expression patterns with a complementary DNA microarray.
Schena M, Shalon D, Davis RW, Brown PO., Science 270(5235), 1995
PMID: 7569999
Escherichia coli has two homologous glutamate decarboxylase genes that map to distinct loci.
Smith DK, Kassam T, Singh B, Elliott JF., J. Bacteriol. 174(18), 1992
PMID: 1522060
Attenuation control of the Escherichia coli phenylalanyl-tRNA synthetase operon.
Springer M, Mayaux JF, Fayat G, Plumbridge JA, Graffe M, Blanquet S, Grunberg-Manago M., J. Mol. Biol. 181(4), 1985
PMID: 3158742
Adaptation to famine: a family of stationary-phase genes revealed by microarray analysis.
Tani TH, Khodursky A, Blumenthal RM, Brown PO, Matthews RG., Proc. Natl. Acad. Sci. U.S.A. 99(21), 2002
PMID: 12374860
Negative chemotaxis in Escherichia coli.
Tso WW, Adler J., J. Bacteriol. 118(2), 1974
PMID: 4597449
Indole can act as an extracellular signal in Escherichia coli.
Wang D, Ding X, Rather PN., J. Bacteriol. 183(14), 2001
PMID: 11418561
High-density microarray-mediated gene expression profiling of Escherichia coli.
Wei Y, Lee JM, Richmond C, Blattner FR, Rafalski JA, LaRossa RA., J. Bacteriol. 183(2), 2001
PMID: 11133948
Isolation of Escherichia coli mRNA and comparison of expression using mRNA and total RNA on DNA microarrays.
Wendisch VF, Zimmer DP, Khodursky A, Peter B, Cozzarelli N, Kustu S., Anal. Biochem. 290(2), 2001
PMID: 11237321
A genetic analysis of various functions of the TyrR protein of Escherichia coli.
Yang J, Ganesan S, Sarsero J, Pittard AJ., J. Bacteriol. 175(6), 1993
PMID: 8449883
Applications of DNA microarrays in microbial systems.
Ye RW, Wang T, Bedzyk L, Croker KM., J. Microbiol. Methods 47(3), 2001
PMID: 11714516
Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture.
Yoon SH, Han MJ, Lee SY, Jeong KJ, Yoo JS., Biotechnol. Bioeng. 81(7), 2003
PMID: 12557308
Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation.
Zimmer DP, Soupene E, Lee HL, Wendisch VF, Khodursky AB, Peter BJ, Bender RA, Kustu S., Proc. Natl. Acad. Sci. U.S.A. 97(26), 2000
PMID: 11121068

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 15639085
PubMed | Europe PMC

Suchen in

Google Scholar