Formation of volutin granules in Corynebacterium glutamicum

Pallerla SR, Knebel S, Polen T, Klauth P, Hollender J, Wendisch VF, Schoberth SM (2005)
Fems Microbiology Letters 243(1): 133-140.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Pallerla, S. R.; Knebel, S.; Polen, T.; Klauth, P.; Hollender, J.; Wendisch, Volker F.UniBi ; Schoberth, S. M.
Abstract / Bemerkung
Volutin granules are intracellular storages of complexed inorganic polyphosphate (poly P). Histochemical staining procedures differentiate between pathogenic corynebacteria such as Corynebacterum diphtheriae (containing volutin) and non-pathogenic species. such as C. glutamicum. Here we report that strains ATCC13032 and MH20-22B of the non-pathogenic C. glutamicum also formed subcellular entities (18-37% of the total cell volume) that had the typical characteristics of volutin granules: (i) volutin staining (ii) green UV fluorescence when stained with 4',6-diamidino-2-phenylindole, (iii) electron-dense and rich in phosphorus when determined with transmission electron microscopy and X-ray microanalysis, and (iv) P-31 NMR poly P resonances of isolated granules dissolved in EDTA. MgCl2 addition to the growth medium stimulated granule formation but did not effect expression of genes involved in poly P metabolism. Granular volutin fractions from lysed cells contained polyphosphate glucokinase as detected by SDS-PAGE/MALDI-TOF, indicating that this poly P metabolizing enzyme is present also in intact poly P granules. The results suggest that formation of volutin is a more widespread phenomenon than generally accepted. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
polyphosphate; bacteria; expression; culture; strain; cells; nmr; DNA microarray; micrococcus-lysodeikticus; maldi-tof; polyphosphate glucokinase; p-31 nmr; magnesium; dapi fluorescence; electron dispersive x-ray analysis; corynebacterium glutamicum; volutin granules; inorganic polyphosphate
Fems Microbiology Letters
Page URI


Pallerla SR, Knebel S, Polen T, et al. Formation of volutin granules in Corynebacterium glutamicum. Fems Microbiology Letters. 2005;243(1):133-140.
Pallerla, S. R., Knebel, S., Polen, T., Klauth, P., Hollender, J., Wendisch, V. F., & Schoberth, S. M. (2005). Formation of volutin granules in Corynebacterium glutamicum. Fems Microbiology Letters, 243(1), 133-140.
Pallerla, S. R., Knebel, S., Polen, T., Klauth, P., Hollender, J., Wendisch, V. F., and Schoberth, S. M. (2005). Formation of volutin granules in Corynebacterium glutamicum. Fems Microbiology Letters 243, 133-140.
Pallerla, S.R., et al., 2005. Formation of volutin granules in Corynebacterium glutamicum. Fems Microbiology Letters, 243(1), p 133-140.
S.R. Pallerla, et al., “Formation of volutin granules in Corynebacterium glutamicum”, Fems Microbiology Letters, vol. 243, 2005, pp. 133-140.
Pallerla, S.R., Knebel, S., Polen, T., Klauth, P., Hollender, J., Wendisch, V.F., Schoberth, S.M.: Formation of volutin granules in Corynebacterium glutamicum. Fems Microbiology Letters. 243, 133-140 (2005).
Pallerla, S. R., Knebel, S., Polen, T., Klauth, P., Hollender, J., Wendisch, Volker F., and Schoberth, S. M. “Formation of volutin granules in Corynebacterium glutamicum”. Fems Microbiology Letters 243.1 (2005): 133-140.

26 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Transformation of Amorphous Polyphosphate Nanoparticles into Coacervate Complexes: An Approach for the Encapsulation of Mesenchymal Stem Cells.
Müller WEG, Wang S, Tolba E, Neufurth M, Ackermann M, Muñoz-Espí R, Lieberwirth I, Glasser G, Schröder HC, Wang X., Small 14(27), 2018
PMID: 29847707
Looking for phosphate-accumulating bacteria in activated sludge processes: a multidisciplinary approach.
Tarayre C, Charlier R, Delepierre A, Brognaux A, Bauwens J, Francis F, Dermience M, Lognay G, Taminiau B, Daube G, Compère P, Meers E, Michels E, Delvigne F., Environ Sci Pollut Res Int 24(9), 2017
PMID: 28132192
Heterologous expression of the Halothiobacillus neapolitanus carboxysomal gene cluster in Corynebacterium glutamicum.
Baumgart M, Huber I, Abdollahzadeh I, Gensch T, Frunzke J., J Biotechnol 258(), 2017
PMID: 28359868
Deciphering the relationship among phosphate dynamics, electron-dense body and lipid accumulation in the green alga Parachlorella kessleri.
Ota S, Yoshihara M, Yamazaki T, Takeshita T, Hirata A, Konomi M, Oshima K, Hattori M, Bišová K, Zachleder V, Kawano S., Sci Rep 6(), 2016
PMID: 27180903
Polyphosphate and associated enzymes as global regulators of stress response and virulence in Campylobacter jejuni.
Kumar A, Gangaiah D, Torrelles JB, Rajashekara G., World J Gastroenterol 22(33), 2016
PMID: 27672264
Regulation of the pstSCAB operon in Corynebacterium glutamicum by the regulator of acetate metabolism RamB.
Sorger-Herrmann U, Taniguchi H, Wendisch VF., BMC Microbiol 15(), 2015
PMID: 26021728
Accumulation of polyphosphate in Lactobacillus spp. and its involvement in stress resistance.
Alcántara C, Blasco A, Zúñiga M, Monedero V., Appl Environ Microbiol 80(5), 2014
PMID: 24375133
Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production.
Lindner SN, Niederholtmeyer H, Schmitz K, Schoberth SM, Wendisch VF., Appl Microbiol Biotechnol 87(2), 2010
PMID: 20180116
Cg2091 encodes a polyphosphate/ATP-dependent glucokinase of Corynebacterium glutamicum.
Lindner SN, Knebel S, Pallerla SR, Schoberth SM, Wendisch VF., Appl Microbiol Biotechnol 87(2), 2010
PMID: 20379711
Link between phosphate starvation and glycogen metabolism in Corynebacterium glutamicum, revealed by metabolomics.
Woo HM, Noack S, Seibold GM, Willbold S, Eikmanns BJ, Bott M., Appl Environ Microbiol 76(20), 2010
PMID: 20802079
Inorganic polyphosphate: essential for growth and survival.
Rao NN, Gómez-García MR, Kornberg A., Annu Rev Biochem 78(), 2009
PMID: 19344251
Exopolyphosphatases PPX1 and PPX2 from Corynebacterium glutamicum.
Lindner SN, Knebel S, Wesseling H, Schoberth SM, Wendisch VF., Appl Environ Microbiol 75(10), 2009
PMID: 19304823
High sensitivity, quantitative measurements of polyphosphate using a new DAPI-based approach.
Aschar-Sobbi R, Abramov AY, Diao C, Kargacin ME, Kargacin GJ, French RJ, Pavlov E., J Fluoresc 18(5), 2008
PMID: 18210191
Group II intron protein localization and insertion sites are affected by polyphosphate.
Zhao J, Niu W, Yao J, Mohr S, Marcotte EM, Lambowitz AM., PLoS Biol 6(6), 2008
PMID: 18593213
Physiological response of Corynebacterium glutamicum to oxidative stress induced by deletion of the transcriptional repressor McbR.
Krömer JO, Bolten CJ, Heinzle E, Schröder H, Wittmann C., Microbiology 154(pt 12), 2008
PMID: 19047758
NCgl2620 encodes a class II polyphosphate kinase in Corynebacterium glutamicum.
Lindner SN, Vidaurre D, Willbold S, Schoberth SM, Wendisch VF., Appl Environ Microbiol 73(15), 2007
PMID: 17545325
Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response.
Kocan M, Schaffer S, Ishige T, Sorger-Herrmann U, Wendisch VF, Bott M., J Bacteriol 188(2), 2006
PMID: 16385062
Emerging Corynebacterium glutamicum systems biology.
Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W., J Biotechnol 124(1), 2006
PMID: 16406159
Determination of soluble and granular inorganic polyphosphate in Corynebacterium glutamicum.
Klauth P, Pallerla SR, Vidaurre D, Ralfs C, Wendisch VF, Schoberth SM., Appl Microbiol Biotechnol 72(5), 2006
PMID: 16977467

29 References

Daten bereitgestellt von Europe PubMed Central.

Pathway analysis and metabolic engineering in Corynebacterium glutamicum.
Sahm H, Eggeling L, de Graaf AA., Biol. Chem. 381(9-10), 2000
PMID: 11076021
A polyphosphate kinase (PPK2) widely conserved in bacteria.
Zhang H, Ishige K, Kornberg A., Proc. Natl. Acad. Sci. U.S.A. 99(26), 2002
PMID: 12486232
The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses.
Ishige T, Krause M, Bott M, Wendisch VF, Sahm H., J. Bacteriol. 185(15), 2003
PMID: 12867461
Monitoring of inorganic polyphosphate dynamics in Corynebacterium glutamicum using a novel oxygen sparger for real time 31P in vivo NMR
Lambert, Acta Biotechnol. 22(), 2002
Corynebacterium glutamicum– morphological and ultrastructural-changes of l-lysine producing cells in continuous culture
Coello, Appl. Microbiol. Biotechnol. 38(), 1992

Isolation and prominent characteristics of an l-lysine hyperproducing strain of Corynebacterium glutamicum
Schrumpf, Appl. Microbiol. Biotechnol. 37(), 1992
Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of L-valine.
Lange C, Rittmann D, Wendisch VF, Bott M, Sahm H., Appl. Environ. Microbiol. 69(5), 2003
PMID: 12732517


Enumeration of soil bacteria with the green fluorescent nucleic acid dye Sytox green in the presence of soil particles.
Klauth P, Wilhelm R, Klumpp E, Poschen L, Groeneweg J., J. Microbiol. Methods 59(2), 2004
PMID: 15369855
Identification of organelles in bacteria similar to acidocalcisomes of unicellular eukaryotes.
Seufferheld M, Vieira MC, Ruiz FA, Rodrigues CO, Moreno SN, Docampo R., J. Biol. Chem. 278(32), 2003
PMID: 12783865
Mobilization of selenite by Ralstonia metallidurans CH34.
Roux M, Sarret G, Pignot-Paintrand I, Fontecave M, Coves J., Appl. Environ. Microbiol. 67(2), 2001
PMID: 11157242
Localized intracellular polyphosphate formation by Desulfovibrio gigas.
Jones HE, Chambers LA., J. Gen. Microbiol. 89(1), 1975
PMID: 50405
A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum.
Schaffer S, Weil B, Nguyen VD, Dongmann G, Gunther K, Nickolaus M, Hermann T, Bott M., Electrophoresis 22(20), 2001
PMID: 11824608

Structures containing polyphosphate in Micrococcus lysodeikticus.
Friedberg I, Avigad G., J. Bacteriol. 96(2), 1968
PMID: 5674060
Fine structure of polyphosphate granules in Micrococcus lysodeikticus.
Friedberg I, Avigad G., Isr. J. Med. Sci. 6(4), 1970
PMID: 4919483

The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Chloride dependence of growth in bacteria.
Roessler M, Sewald X, Muller V., FEMS Microbiol. Lett. 225(1), 2003
PMID: 12900036
31P NMR studies of energy metabolism in xanthosine-5'-monophosphate overproducing Corynebacterium ammoniagenes.
Noguchi Y, Shimba N, Kawahara Y, Suzuki E, Sugimoto S., Eur. J. Biochem. 270(12), 2003
PMID: 12787028


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 15668011
PubMed | Europe PMC

Suchen in

Google Scholar