Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis

Netzer R, Krause M, Rittmann D, Peters-Wendisch P, Eggeling L, Wendisch VF, Sahm H (2004)
Archives of Microbiology 182(5): 354-363.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Netzer, R.; Krause, M.; Rittmann, D.; Peters-Wendisch, PetraUniBi; Eggeling, L.; Wendisch, Volker F.UniBi ; Sahm, H.
Abstract / Bemerkung
In many bacteria, pyruvate kinase serves a well-defined function in glycolysis, catalyzing an ATP-generating reaction. However, its role during growth on carbon sources requiring glucoeneogenesis is less well investigated. We analyzed a defined pyruvate kinase gene (pyk) deletion mutant of Corynebacterium glutamicum, which is unable to grow on ribose as sole carbon source. Unexpectedly, the pyk deletion mutant was also unable to grow on acetate or citrate as sole carbon sources unless low amounts of pyruvate were added to the growth medium. A spontaneous suppressor mutant of the pyk deletion strain that regained the ability to grow on acetate was isolated. DNA microarray experiments revealed increased expression of the malic enzyme gene malE. The point mutation upstream of malE identified in this mutant was responsible for the loss of carbon-source-dependent regulation, as revealed by transcriptional fusion analysis. Overexpression of malE was sufficient to restore growth of the pyk deletion strain on acetate or citrate. The requirement of increased malic enzyme levels to re-route the carbon flux at the interface between glycolysis, gluconeogenesis and the tricarboxylic acid cycle in order to compensate for the absence of pyruvate kinase indicates a metabolic flux bifurcation at the metabolic node phosphoenolpyruvate. Whereas during growth of C. glutamicum on acetate or citrate most of the phosphoenolpyruvate generated from oxaloacetate is metabolized in gluconeogenesis, a fraction is converted by pyruvate kinase in the glycolytic direction to sustain proper pyruvate availability for biomass synthesis.
Stichworte
lysine production; bacillus-subtilis; acetate metabolism; expression analysis; nucleotide-sequence; DNA microarray analyses; acid-producing bacteria; escherichia-coli k-12; phosphoenolpyruvate carboxykinase; biochemical-characterization
Erscheinungsjahr
2004
Zeitschriftentitel
Archives of Microbiology
Band
182
Ausgabe
5
Seite(n)
354-363
ISSN
0302-8933
eISSN
1432-072X
Page URI
https://pub.uni-bielefeld.de/record/1895160

Zitieren

Netzer R, Krause M, Rittmann D, et al. Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis. Archives of Microbiology. 2004;182(5):354-363.
Netzer, R., Krause, M., Rittmann, D., Peters-Wendisch, P., Eggeling, L., Wendisch, V. F., & Sahm, H. (2004). Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis. Archives of Microbiology, 182(5), 354-363. https://doi.org/10.1007/s00203-004-0710-4
Netzer, R., Krause, M., Rittmann, D., Peters-Wendisch, Petra, Eggeling, L., Wendisch, Volker F., and Sahm, H. 2004. “Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis”. Archives of Microbiology 182 (5): 354-363.
Netzer, R., Krause, M., Rittmann, D., Peters-Wendisch, P., Eggeling, L., Wendisch, V. F., and Sahm, H. (2004). Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis. Archives of Microbiology 182, 354-363.
Netzer, R., et al., 2004. Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis. Archives of Microbiology, 182(5), p 354-363.
R. Netzer, et al., “Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis”, Archives of Microbiology, vol. 182, 2004, pp. 354-363.
Netzer, R., Krause, M., Rittmann, D., Peters-Wendisch, P., Eggeling, L., Wendisch, V.F., Sahm, H.: Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis. Archives of Microbiology. 182, 354-363 (2004).
Netzer, R., Krause, M., Rittmann, D., Peters-Wendisch, Petra, Eggeling, L., Wendisch, Volker F., and Sahm, H. “Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis”. Archives of Microbiology 182.5 (2004): 354-363.

42 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources.
Jorge JMP, Pérez-García F, Wendisch VF., Bioresour Technol 245(pt b), 2017
PMID: 28522202
Production of amino acids - Genetic and metabolic engineering approaches.
Lee JH, Wendisch VF., Bioresour Technol 245(pt b), 2017
PMID: 28552565
Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi).
Cleto S, Jensen JV, Wendisch VF, Lu TK., ACS Synth Biol 5(5), 2016
PMID: 26829286
A novel pyruvate kinase and its application in lactic acid production under oxygen deprivation in Corynebacterium glutamicum.
Chai X, Shang X, Zhang Y, Liu S, Liang Y, Zhang Y, Wen T., BMC Biotechnol 16(1), 2016
PMID: 27852252
Absolute quantification of Corynebacterium glutamicum glycolytic and anaplerotic enzymes by QconCAT.
Voges R, Corsten S, Wiechert W, Noack S., J Proteomics 113(), 2015
PMID: 25451015
Regulation of the pstSCAB operon in Corynebacterium glutamicum by the regulator of acetate metabolism RamB.
Sorger-Herrmann U, Taniguchi H, Wendisch VF., BMC Microbiol 15(), 2015
PMID: 26021728
NADPH-generating systems in bacteria and archaea.
Spaans SK, Weusthuis RA, van der Oost J, Kengen SW., Front Microbiol 6(), 2015
PMID: 26284036
Anaerobic growth of Corynebacterium glutamicum via mixed-acid fermentation.
Michel A, Koch-Koerfges A, Krumbach K, Brocker M, Bott M., Appl Environ Microbiol 81(21), 2015
PMID: 26276118
Metabolic engineering of Corynebacterium glutamicum for glycolate production.
Zahoor A, Otten A, Wendisch VF., J Biotechnol 192 Pt B(), 2014
PMID: 24486442
Adaptation of Bacillus subtilis carbon core metabolism to simultaneous nutrient limitation and osmotic challenge: a multi-omics perspective.
Kohlstedt M, Sappa PK, Meyer H, Maaß S, Zaprasis A, Hoffmann T, Becker J, Steil L, Hecker M, van Dijl JM, Lalk M, Mäder U, Stülke J, Bremer E, Völker U, Wittmann C., Environ Microbiol 16(6), 2014
PMID: 24571712
Metabolic engineering of Acinetobacter baylyi ADP1 for improved growth on gluconate and glucose.
Kannisto M, Aho T, Karp M, Santala V., Appl Environ Microbiol 80(22), 2014
PMID: 25192990
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2013
PMID: 23164409
Role of central metabolism in the osmoadaptation of the halophilic bacterium Chromohalobacter salexigens.
Pastor JM, Bernal V, Salvador M, Argandoña M, Vargas C, Csonka L, Sevilla A, Iborra JL, Nieto JJ, Cánovas M., J Biol Chem 288(24), 2013
PMID: 23615905
Impact of different CO2/HCO3- levels on metabolism and regulation in Corynebacterium glutamicum.
Blombach B, Buchholz J, Busche T, Kalinowski J, Takors R., J Biotechnol 168(4), 2013
PMID: 24140290
Arabitol metabolism of Corynebacterium glutamicum and its regulation by AtlR.
Laslo T, von Zaluskowski P, Gabris C, Lodd E, Rückert C, Dangel P, Kalinowski J, Auchter M, Seibold G, Eikmanns BJ., J Bacteriol 194(5), 2012
PMID: 22178972
Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Wendisch VF., BMC Microbiol 12(), 2012
PMID: 22963379
From zero to hero--design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production.
Becker J, Zelder O, Häfner S, Schröder H, Wittmann C., Metab Eng 13(2), 2011
PMID: 21241816
Control of adhA and sucR expression by the SucR regulator in Corynebacterium glutamicum.
Auchter M, Laslo T, Fleischer C, Schiller L, Arndt A, Gaigalat L, Kalinowski J, Eikmanns BJ., J Biotechnol 152(3), 2011
PMID: 21320555
Phosphotransferase system-independent glucose utilization in corynebacterium glutamicum by inositol permeases and glucokinases.
Lindner SN, Seibold GM, Henrich A, Krämer R, Wendisch VF., Appl Environ Microbiol 77(11), 2011
PMID: 21478323
Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum.
Youn JW, Jolkver E, Krämer R, Marin K, Wendisch VF., J Bacteriol 191(17), 2009
PMID: 19581365
Upregulation of glyoxylate cycle genes upon Paracoccidioides brasiliensis internalization by murine macrophages and in vitro nutritional stress condition.
Derengowski LS, Tavares AH, Silva S, Procópio LS, Felipe MS, Silva-Pereira I., Med Mycol 46(2), 2008
PMID: 18324491
Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum.
Becker J, Klopprogge C, Wittmann C., Microb Cell Fact 7(), 2008
PMID: 18339202
Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum.
Youn JW, Jolkver E, Krämer R, Marin K, Wendisch VF., J Bacteriol 190(19), 2008
PMID: 18658264
Emerging Corynebacterium glutamicum systems biology.
Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W., J Biotechnol 124(1), 2006
PMID: 16406159

57 References

Daten bereitgestellt von Europe PubMed Central.


S, J Gen Appl Microbiol 13(), 1967
Towards a phosphoproteome map of Corynebacterium glutamicum.
Bendt AK, Burkovski A, Schaffer S, Bott M, Farwick M, Hermann T., Proteomics 3(8), 2003
PMID: 12923788
Metabolic responses to substrate futile cycling in Escherichia coli.
Chao YP, Liao JC., J. Biol. Chem. 269(7), 1994
PMID: 8106492
Control of gluconeogenic growth by pps and pck in Escherichia coli.
Chao YP, Patnaik R, Roof WD, Young RF, Liao JC., J. Bacteriol. 175(21), 1993
PMID: 8226637
Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose.
Dominguez H, Rollin C, Guyonvarch A, Guerquin-Kern JL, Cocaign-Bousquet M, Lindley ND., Eur. J. Biochem. 254(1), 1998
PMID: 9652400
Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase.
Eikmanns BJ, Thum-Schmitz N, Eggeling L, Ludtke KU, Sahm H., Microbiology (Reading, Engl.) 140 ( Pt 8)(), 1994
PMID: 7522844
Metabolic flux responses to pyruvate kinase knockout in Escherichia coli.
Emmerling M, Dauner M, Ponti A, Fiaux J, Hochuli M, Szyperski T, Wuthrich K, Bailey JE, Sauer U., J. Bacteriol. 184(1), 2002
PMID: 11741855
Characterization of growth and acid formation in a Bacillus subtilis pyruvate kinase mutant.
Fry B, Zhu T, Domach MM, Koepsel RR, Phalakornkule C, Ataai MM., Appl. Environ. Microbiol. 66(9), 2000
PMID: 10966427
Acetate metabolism and its regulation in Corynebacterium glutamicum.
Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ., J. Biotechnol. 104(1-3), 2003
PMID: 12948633
RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum.
Gerstmeir R, Cramer A, Dangel P, Schaffer S, Eikmanns BJ., J. Bacteriol. 186(9), 2004
PMID: 15090522
Cloning of the malic enzyme gene from Corynebacterium glutamicum and role of the enzyme in lactate metabolism.
Gourdon P, Baucher MF, Lindley ND, Guyonvarch A., Appl. Environ. Microbiol. 66(7), 2000
PMID: 10877795
Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants.
Grant SG, Jessee J, Bloom FR, Hanahan D., Proc. Natl. Acad. Sci. U.S.A. 87(12), 1990
PMID: 2162051

D, 1985
Industrial production of amino acids by coryneform bacteria.
Hermann T., J. Biotechnol. 104(1-3), 2003
PMID: 12948636
The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses.
Ishige T, Krause M, Bott M, Wendisch VF, Sahm H., J. Bacteriol. 185(15), 2003
PMID: 12867461

M, Biotechnol Tech 13(), 1999
Purification and properties of oxaloacetate decarboxylase from Corynebacterium glutamicum.
Jetten MS, Sinskey AJ., Antonie Van Leeuwenhoek 67(2), 1995
PMID: 7771770
Structural and functional analysis of pyruvate kinase from Corynebacterium glutamicum.
Jetten MS, Gubler ME, Lee SH, Sinskey AJ., Appl. Environ. Microbiol. 60(7), 1994
PMID: 8074528
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Escherichia coli spotted double-strand DNA microarrays: RNA extraction, labeling, hybridization, quality control, and data management.
Khodursky AB, Bernstein JA, Peter BJ, Rhodius V, Wendisch VF, Zimmer DP., Methods Mol. Biol. 224(), 2003
PMID: 12710666
Uptake of glutamate in Corynebacterium glutamicum. 1. Kinetic properties and regulation by internal pH and potassium.
Kramer R, Lambert C, Hoischen C, Ebbighausen H., Eur. J. Biochem. 194(3), 1990
PMID: 1980106
Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of L-valine.
Lange C, Rittmann D, Wendisch VF, Bott M, Sahm H., Appl. Environ. Microbiol. 69(5), 2003
PMID: 12732517
LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli.
Lehnen D, Blumer C, Polen T, Wackwitz B, Wendisch VF, Unden G., Mol. Microbiol. 45(2), 2002
PMID: 12123461
Physiological functions of NAD- and NADP-linked malic enzymes in Escherichia coli.
Murai T, Tokushige M, Nagai J, Katsuki H., Biochem. Biophys. Res. Commun. 43(4), 1971
PMID: 4397922
Cloning and nucleotide sequence of the Escherichia coli K-12 ppsA gene, encoding PEP synthase.
Niersbach M, Kreuzaler F, Geerse RH, Postma PW, Hirsch HJ., Mol. Gen. Genet. 231(2), 1992
PMID: 1310524
Global expression profiling of acetate-grown Escherichia coli.
Oh MK, Rohlin L, Kao KC, Liao JC., J. Biol. Chem. 277(15), 2002
PMID: 11815613
In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum.
Petersen S, de Graaf AA, Eggeling L, Mollney M, Wiechert W, Sahm H., J. Biol. Chem. 275(46), 2000
PMID: 10946002

P, FEMS Microbiol Lett 112(), 1993

P, Microbiology 143(), 1997
Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene.
Peters-Wendisch PG, Kreutzer C, Kalinowski J, Patek M, Sahm H, Eikmanns BJ., Microbiology (Reading, Engl.) 144 ( Pt 4)(), 1998
PMID: 9579065
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays.
Polen T, Wendisch VF., Appl. Biochem. Biotechnol. 118(1-3), 2004
PMID: 15304751
DNA microarray analyses of the long-term adaptive response of Escherichia coli to acetate and propionate.
Polen T, Rittmann D, Wendisch VF, Sahm H., Appl. Environ. Microbiol. 69(3), 2003
PMID: 12620868
Impact of genomic technologies on studies of bacterial gene expression.
Rhodius V, Van Dyk TK, Gross C, LaRossa RA., Annu. Rev. Microbiol. 56(), 2002
PMID: 12142487
Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production.
Riedel C, Rittmann D, Dangel P, Mockel B, Petersen S, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(4), 2001
PMID: 11565516

J, 1989

P, Biotechnol Tech 12(), 1998
Robustness against mutations in genetic networks of yeast.
Wagner A., Nat. Genet. 24(4), 2000
PMID: 10742097
Isolation of Escherichia coli mRNA and comparison of expression using mRNA and total RNA on DNA microarrays.
Wendisch VF, Zimmer DP, Khodursky A, Peter B, Cozzarelli N, Kustu S., Anal. Biochem. 290(2), 2001
PMID: 11237321
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 15375646
PubMed | Europe PMC

Suchen in

Google Scholar