Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of L-valine

Lange C, Rittmann D, Wendisch VF, Bott M, Sahm H (2003)
Applied and Environmental Microbiology 69(5): 2521-2532.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Abstract / Bemerkung
Addition of L-valine (50 to 200 mM) to glucose minimal medium had no effect on the growth of wild-type Corynebacterium glutamicum ATCC 13032 but inhibited the growth of the derived valine production strain VAL1 [13032 DeltailvA DeltapanBC(pJCilvBNCD)] in a concentration-dependent manner. In order to explore this strain-specific valine effect, genomewide expression profiling was performed using DNA microarrays, which showed that valine caused an increased ilvBN mRNA level in VAL1 but not in the wild type. This unexpected result was confirmed by an increased cellular level of the ilvB protein product, i.e., the large subunit of acetohydroxyacid synthase (AHAS), and by an increased AHAS activity of valine-treated VAL1 cells. The conclusion that valine caused the limitation of another branched-chain amino acid was confirmed by showing that high concentrations of L-isoleucine could relieve the valine effect on VAL1 whereas L-leucine had the same effect as valine. The valine-caused isoleucine limitation was supported by the finding that the inhibitory valine effect was linked to the ilvA deletion that results in isoleucine auxotrophy. Taken together, these results implied that the valine effect is caused by competition for uptake of isoleucine by the carrier BrnQ, which transports all branched-chained amino acids. Indeed, valine inhibition could also be relieved by supplementing VAL1 with the dipeptide isoleucyl-isoleucine, which is taken up by a dipeptide transport system rather than by BrnQ. Interestingly, addition of external valine stimulated valine production by VAL1. This effect is most probably due to a reduced carbon usage for biomass production and to the increased expression of ilvBN, indicating that AHAS activity may still be a limiting factor for valine production in the VAL1 strain.
Erscheinungsjahr
Zeitschriftentitel
Applied and Environmental Microbiology
Band
69
Ausgabe
5
Seite(n)
2521-2532
ISSN
PUB-ID

Zitieren

Lange C, Rittmann D, Wendisch VF, Bott M, Sahm H. Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of L-valine. Applied and Environmental Microbiology. 2003;69(5):2521-2532.
Lange, C., Rittmann, D., Wendisch, V. F., Bott, M., & Sahm, H. (2003). Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of L-valine. Applied and Environmental Microbiology, 69(5), 2521-2532. doi:10.1128/Aem.69.5.2521-2532.2003
Lange, C., Rittmann, D., Wendisch, V. F., Bott, M., and Sahm, H. (2003). Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of L-valine. Applied and Environmental Microbiology 69, 2521-2532.
Lange, C., et al., 2003. Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of L-valine. Applied and Environmental Microbiology, 69(5), p 2521-2532.
C. Lange, et al., “Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of L-valine”, Applied and Environmental Microbiology, vol. 69, 2003, pp. 2521-2532.
Lange, C., Rittmann, D., Wendisch, V.F., Bott, M., Sahm, H.: Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of L-valine. Applied and Environmental Microbiology. 69, 2521-2532 (2003).
Lange, C., Rittmann, D., Wendisch, Volker F., Bott, M., and Sahm, H. “Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of L-valine”. Applied and Environmental Microbiology 69.5 (2003): 2521-2532.

51 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Physiological Response of Corynebacterium glutamicum to Increasingly Nutrient-Rich Growth Conditions.
Graf M, Zieringer J, Haas T, Nieß A, Blombach B, Takors R., Front Microbiol 9(), 2018
PMID: 30210489
Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.
Pérez-García F, Peters-Wendisch P, Wendisch VF., Appl Microbiol Biotechnol 100(18), 2016
PMID: 27345060
Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum.
Frohwitter J, Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF., J Biotechnol 191(), 2014
PMID: 24910970
Proteome response of Corynebacterium glutamicum to high concentration of industrially relevant C₄ and C₅ dicarboxylic acids.
Vasco-Cárdenas MF, Baños S, Ramos A, Martín JF, Barreiro C., J Proteomics 85(), 2013
PMID: 23624027
IpsA, a novel LacI-type regulator, is required for inositol-derived lipid formation in Corynebacteria and Mycobacteria.
Baumgart M, Luder K, Grover S, Gätgens C, Besra GS, Frunzke J., BMC Biol 11(), 2013
PMID: 24377418
Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for L-methionine and branched-chain amino acids.
Lange C, Mustafi N, Frunzke J, Kennerknecht N, Wessel M, Bott M, Wendisch VF., J Biotechnol 158(4), 2012
PMID: 21683740
Biotin protein ligase from Corynebacterium glutamicum: role for growth and L: -lysine production.
Peters-Wendisch P, Stansen KC, Götker S, Wendisch VF., Appl Microbiol Biotechnol 93(6), 2012
PMID: 22159614
Characterization of the biotin uptake system encoded by the biotin-inducible bioYMN operon of Corynebacterium glutamicum.
Schneider J, Peters-Wendisch P, Stansen KC, Götker S, Maximow S, Krämer R, Wendisch VF., BMC Microbiol 12(), 2012
PMID: 22243621
Recombinant organisms for production of industrial products.
Adrio JL, Demain AL., Bioeng Bugs 1(2), 2010
PMID: 21326937
Importance of NADPH supply for improved L-valine formation in Corynebacterium glutamicum.
Bartek T, Blombach B, Zönnchen E, Makus P, Lang S, Eikmanns BJ, Oldiges M., Biotechnol Prog 26(2), 2010
PMID: 20014412
Factors enhancing L-valine production by the growth-limited L-isoleucine auxotrophic strain Corynebacterium glutamicum DeltailvA DeltapanB ilvNM13 (pECKAilvBNC).
Denina I, Paegle L, Prouza M, Holátko J, Pátek M, Nesvera J, Ruklisha M., J Ind Microbiol Biotechnol 37(7), 2010
PMID: 20364396
Rational design for over-production of desirable microbial metabolites by precision engineering.
Gao H, Zhou X, Gou Z, Zhuo Y, Fu C, Liu M, Song F, Ashforth E, Zhang L., Antonie Van Leeuwenhoek 98(2), 2010
PMID: 20401739
L-Glutamine as a nitrogen source for Corynebacterium glutamicum: derepression of the AmtR regulon and implications for nitrogen sensing.
Rehm N, Georgi T, Hiery E, Degner U, Schmiedl A, Burkovski A, Bott M., Microbiology 156(pt 10), 2010
PMID: 20656783
Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production.
Krause FS, Blombach B, Eikmanns BJ., Appl Environ Microbiol 76(24), 2010
PMID: 20935122
Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate.
Kato O, Youn JW, Stansen KC, Matsui D, Oikawa T, Wendisch VF., BMC Microbiol 10(), 2010
PMID: 21159175
Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation.
Holátko J, Elisáková V, Prouza M, Sobotka M, Nesvera J, Pátek M., J Biotechnol 139(3), 2009
PMID: 19121344
Pathway identification combining metabolic flux and functional genomics analyses: acetate and propionate activation by Corynebacterium glutamicum.
Veit A, Rittmann D, Georgi T, Youn JW, Eikmanns BJ, Wendisch VF., J Biotechnol 140(1-2), 2009
PMID: 19162097
Competitive inhibition of amino acid uptake suppresses chlamydial growth: involvement of the chlamydial amino acid transporter BrnQ.
Braun PR, Al-Younes H, Gussmann J, Klein J, Schneider E, Meyer TF., J Bacteriol 190(5), 2008
PMID: 18024516
Corynebacterium glutamicum tailored for high-yield L-valine production.
Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ., Appl Microbiol Biotechnol 79(3), 2008
PMID: 18379776
Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343.
Gätgens C, Degner U, Bringer-Meyer S, Herrmann U., Appl Microbiol Biotechnol 76(3), 2007
PMID: 17497148
Gene expression analysis of Corynebacterium glutamicum subjected to long-term lactic acid adaptation.
Jakob K, Satorhelyi P, Lange C, Wendisch VF, Silakowski B, Scherer S, Neuhaus K., J Bacteriol 189(15), 2007
PMID: 17526706
Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response.
Kocan M, Schaffer S, Ishige T, Sorger-Herrmann U, Wendisch VF, Bott M., J Bacteriol 188(2), 2006
PMID: 16385062
Emerging Corynebacterium glutamicum systems biology.
Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W., J Biotechnol 124(1), 2006
PMID: 16406159
Genetic improvement of processes yielding microbial products.
Adrio JL, Demain AL., FEMS Microbiol Rev 30(2), 2006
PMID: 16472304
The DtxR regulon of Corynebacterium glutamicum.
Wennerhold J, Bott M., J Bacteriol 188(8), 2006
PMID: 16585752
Towards replacing closed with open target selection strategies.
van der Werf MJ., Trends Biotechnol 23(1), 2005
PMID: 15629852
Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum.
Elisáková V, Pátek M, Holátko J, Nesvera J, Leyval D, Goergen JL, Delaunay S., Appl Environ Microbiol 71(1), 2005
PMID: 15640189
Formation of volutin granules in Corynebacterium glutamicum.
Pallerla SR, Knebel S, Polen T, Klauth P, Hollender J, Wendisch VF, Schoberth SM., FEMS Microbiol Lett 243(1), 2005
PMID: 15668011
DNA microarray analysis of Methanosarcina mazei Gö1 reveals adaptation to different methanogenic substrates.
Hovey R, Lentes S, Ehrenreich A, Salmon K, Saba K, Gottschalk G, Gunsalus RP, Deppenmeier U., Mol Genet Genomics 273(3), 2005
PMID: 15902489
The transcriptional activator ClgR controls transcription of genes involved in proteolysis and DNA repair in Corynebacterium glutamicum.
Engels S, Ludwig C, Schweitzer JE, Mack C, Bott M, Schaffer S., Mol Microbiol 57(2), 2005
PMID: 15978086
DNA microarray analysis of the nitrogen starvation response of Corynebacterium glutamicum.
Silberbach M, Hüser A, Kalinowski J, Pühler A, Walter B, Krämer R, Burkovski A., J Biotechnol 119(4), 2005
PMID: 15935503
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl Environ Microbiol 71(10), 2005
PMID: 16204505
In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome.
Krömer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C., J Bacteriol 186(6), 2004
PMID: 14996808
Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis.
Netzer R, Krause M, Rittmann D, Peters-Wendisch PG, Eggeling L, Wendisch VF, Sahm H., Arch Microbiol 182(5), 2004
PMID: 15375646
Cometabolism of a nongrowth substrate: L-serine utilization by Corynebacterium glutamicum.
Netzer R, Peters-Wendisch P, Eggeling L, Sahm H., Appl Environ Microbiol 70(12), 2004
PMID: 15574911

61 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 1967
Global gene expression profiling in Escherichia coli K12. The effects of integration host factor.
Arfin SM, Long AD, Ito ET, Tolleri L, Riehle MM, Paegle ES, Hatfield GW., J. Biol. Chem. 275(38), 2000
PMID: 10871608

AUTHOR UNKNOWN, 1990

AUTHOR UNKNOWN, 1993
Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthases and acetohydroxyacid synthases.
Chipman D, Barak Z, Schloss JV., Biochim. Biophys. Acta 1385(2), 1998
PMID: 9655946

AUTHOR UNKNOWN, 1990
Molecular cloning and analysis of the argC gene from Corynebacterium glutamicum.
Chun JY, Lee EJ, Lee HS, Cheon CI, Min KH, Lee MS., Biochem. Mol. Biol. Int. 46(3), 1998
PMID: 9818083

AUTHOR UNKNOWN, 1990
Escherichia coli K-12 mutants altered in the transport systems for oligo- and dipeptides.
De Felice M, Guardiola J, Lamberti A, Iaccarino M., J. Bacteriol. 116(2), 1973
PMID: 4126826
Growth inhibition as a consequence of antagonism between related amino acids: effect of valine in Escherichia coli K-12.
De Felice M, Levinthal M, Iaccarino M, Guardiola J., Microbiol. Rev. 43(1), 1979
PMID: 379577

AUTHOR UNKNOWN, 1978
Transport of branched-chain amino acids in Corynebacterium glutamicum.
Ebbighausen H, Weil B, Kramer R., Arch. Microbiol. 151(3), 1989
PMID: 2705860

AUTHOR UNKNOWN, 1987

AUTHOR UNKNOWN, 2001

AUTHOR UNKNOWN, 1997

AUTHOR UNKNOWN, 1990
Nucleotide sequence of the ilvB promoter-regulatory region: a biosynthetic operon controlled by attenuation and cyclic AMP.
Friden P, Newman T, Freundlich M., Proc. Natl. Acad. Sci. U.S.A. 79(20), 1982
PMID: 6292893
Determination of serum proteins by means of the biuret reaction.
GORNALL AG, BARDAWILL CJ, DAVID MM., J. Biol. Chem. 177(2), 1949
PMID: 18110453

AUTHOR UNKNOWN, 1996
The acetolactate synthase isoenzymes of Escherichia coli K-12.
Guardiola J, De Felice M, Lamberti A, Iaccarino M., Mol. Gen. Genet. 156(1), 1977
PMID: 340888
Attenuation of the ilvB operon by amino acids reflecting substrates or products of the ilvB gene product.
Hauser CA, Hatfield GW., Proc. Natl. Acad. Sci. U.S.A. 81(1), 1984
PMID: 6198646
Salmonella typhimurium LT2 catabolizes propionate via the 2-methylcitric acid cycle.
Horswill AR, Escalante-Semerena JC., J. Bacteriol. 181(18), 1999
PMID: 10482501
Regulation of coenzyme A biosynthesis.
Jackowski S, Rock CO., J. Bacteriol. 148(3), 1981
PMID: 6796563
Export of L-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family.
Kennerknecht N, Sahm H, Yen MR, Patek M, Saier Jr MH Jr, Eggeling L., J. Bacteriol. 184(14), 2002
PMID: 12081967

AUTHOR UNKNOWN, 0
Molecular basis of valine resistance in Escherichia coli K-12.
Lawther RP, Calhoun DH, Adams CW, Hauser CA, Gray J, Hatfield GW., Proc. Natl. Acad. Sci. U.S.A. 78(2), 1981
PMID: 7015336
LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli.
Lehnen D, Blumer C, Polen T, Wackwitz B, Wendisch VF, Unden G., Mol. Microbiol. 45(2), 2002
PMID: 12123461

AUTHOR UNKNOWN, 1996

AUTHOR UNKNOWN, 1979
Branched-chain amino acid catabolism in bacteria.
Massey LK, Sokatch JR, Conrad RS., Bacteriol Rev 40(1), 1976
PMID: 773366
Peptide transport by micro-organisms.
Payne JW, Smith MW., Adv. Microb. Physiol. 36(), 1994
PMID: 7942312
Linking central metabolism with increased pathway flux: L-valine accumulation by Corynebacterium glutamicum.
Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L., Appl. Environ. Microbiol. 68(5), 2002
PMID: 11976094
Impact of genomic technologies on studies of bacterial gene expression.
Rhodius V, Van Dyk TK, Gross C, LaRossa RA., Annu. Rev. Microbiol. 56(), 2002
PMID: 12142487
A protein that binds to the regulatory region of the Escherichia coli ilvIH operon.
Ricca E, Aker DA, Calvo JM., J. Bacteriol. 171(3), 1989
PMID: 2646291
Pathway analysis and metabolic engineering in Corynebacterium glutamicum.
Sahm H, Eggeling L, de Graaf AA., Biol. Chem. 381(9-10), 2000
PMID: 11076021
Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway.
Sakanyan V, Petrosyan P, Lecocq M, Boyen A, Legrain C, Demarez M, Hallet JN, Glansdorff N., Microbiology (Reading, Engl.) 142 ( Pt 1)(), 1996
PMID: 8581175

AUTHOR UNKNOWN, 1989
A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum.
Schaffer S, Weil B, Nguyen VD, Dongmann G, Gunther K, Nickolaus M, Hermann T, Bott M., Electrophoresis 22(20), 2001
PMID: 11824608
Mutational isolation of a sieve for editing in a transfer RNA synthetase.
Schmidt E, Schimmel P., Science 264(5156), 1994
PMID: 8146659

AUTHOR UNKNOWN, 1992
Substrate specificity of the periplasmic dipeptide-binding protein from Escherichia coli: experimental basis for the design of peptide prodrugs.
Smith MW, Tyreman DR, Payne GM, Marshall NJ, Payne JW., Microbiology (Reading, Engl.) 145 ( Pt 10)(), 1999
PMID: 10537211
Isoleucine uptake in Corynebacterium glutamicum ATCC 13032 is directed by the brnQ gene product.
Tauch A, Hermann T, Burkovski A, Kramer R, Puhler A, Kalinowski J., Arch. Microbiol. 169(4), 1998
PMID: 9531631
Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria.
Textor S, Wendisch VF, De Graaf AA, Muller U, Linder MI, Linder D, Buckel W., Arch. Microbiol. 168(5), 1997
PMID: 9325432

AUTHOR UNKNOWN, 1996
Isolation of Escherichia coli mRNA and comparison of expression using mRNA and total RNA on DNA microarrays.
Wendisch VF, Zimmer DP, Khodursky A, Peter B, Cozzarelli N, Kustu S., Anal. Biochem. 290(2), 2001
PMID: 11237321
A colorimetric determination of blood acetoin.
WESTERFIELD WW., J. Biol. Chem. 161(), 1945
PMID: 21006932
Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation.
Zimmer DP, Soupene E, Lee HL, Wendisch VF, Khodursky AB, Peter BJ, Bender RA, Kustu S., Proc. Natl. Acad. Sci. U.S.A. 97(26), 2000
PMID: 11121068

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 12732517
PubMed | Europe PMC

Suchen in

Google Scholar