Identification of AcnR, a TetR-type repressor of the aconitase gene acn in Corynebacterium glutamicum

Krug A, Wendisch VF, Bott M (2005)
Journal of Biological Chemistry 280(1): 585-595.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Krug, A.; Wendisch, Volker F.UniBi ; Bott, M.
Abstract / Bemerkung
In Corynebacterium glutamicum, the activity of aconitase is 2.5-4-fold higher on propionate, citrate, or acetate than on glucose. Here we show that this variation is caused by transcriptional regulation. In search for putative regulators, a gene (acnR) encoding a TetR-type transcriptional regulator was found to be encoded immediately downstream of the aconitase gene (acn) in C. glutamicum. Deletion of the acnR gene led to a 5-fold increased acn-mRNA level and a 5-fold increased aconitase activity, suggesting that AcnR functions as repressor of acn expression. DNA microarray analyses indicated that acn is the primary target gene of AcnR in the C. glutamicum genome. Purified AcnR was shown to be a homodimer, which binds to the acn promoter in the region from -11 to -28 relative to the transcription start. It thus presumably acts by interfering with the binding of RNA polymerase. The acn-acnR organization is conserved in all corynebacteria and mycobacteria with known genome sequence and a putative AcnR consensus binding motif (CAGNACnnncGTACTG) was identified in the corresponding acn upstream regions. Mutations within this motif inhibited AcnR binding. Because the activities of citrate synthase and isocitrate dehydrogenase were previously reported not to be increased during growth on acetate, our data indicate that aconitase is a major control point of tricarboxylic acid cycle activity in C. glutamicum, and they identify AcnR as the first transcriptional regulator of a tricarboxylic acid cycle gene in the Corynebacterianeae.
Stichworte
nucleotide-sequence; gel-electrophoresis; binding protein; posttranscriptional regulation; DNA microarray analyses; bacillus-subtilis aconitase; escherichia-coli aconitases; acetate metabolism; molecular analysis; respiratory-chain
Erscheinungsjahr
2005
Zeitschriftentitel
Journal of Biological Chemistry
Band
280
Ausgabe
1
Seite(n)
585-595
ISSN
0021-9258
eISSN
1083-351X
Page URI
https://pub.uni-bielefeld.de/record/1895101

Zitieren

Krug A, Wendisch VF, Bott M. Identification of AcnR, a TetR-type repressor of the aconitase gene acn in Corynebacterium glutamicum. Journal of Biological Chemistry. 2005;280(1):585-595.
Krug, A., Wendisch, V. F., & Bott, M. (2005). Identification of AcnR, a TetR-type repressor of the aconitase gene acn in Corynebacterium glutamicum. Journal of Biological Chemistry, 280(1), 585-595. https://doi.org/10.1074/jbc.M408271200
Krug, A., Wendisch, Volker F., and Bott, M. 2005. “Identification of AcnR, a TetR-type repressor of the aconitase gene acn in Corynebacterium glutamicum”. Journal of Biological Chemistry 280 (1): 585-595.
Krug, A., Wendisch, V. F., and Bott, M. (2005). Identification of AcnR, a TetR-type repressor of the aconitase gene acn in Corynebacterium glutamicum. Journal of Biological Chemistry 280, 585-595.
Krug, A., Wendisch, V.F., & Bott, M., 2005. Identification of AcnR, a TetR-type repressor of the aconitase gene acn in Corynebacterium glutamicum. Journal of Biological Chemistry, 280(1), p 585-595.
A. Krug, V.F. Wendisch, and M. Bott, “Identification of AcnR, a TetR-type repressor of the aconitase gene acn in Corynebacterium glutamicum”, Journal of Biological Chemistry, vol. 280, 2005, pp. 585-595.
Krug, A., Wendisch, V.F., Bott, M.: Identification of AcnR, a TetR-type repressor of the aconitase gene acn in Corynebacterium glutamicum. Journal of Biological Chemistry. 280, 585-595 (2005).
Krug, A., Wendisch, Volker F., and Bott, M. “Identification of AcnR, a TetR-type repressor of the aconitase gene acn in Corynebacterium glutamicum”. Journal of Biological Chemistry 280.1 (2005): 585-595.

42 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Regulons of global transcription factors in Corynebacterium glutamicum.
Toyoda K, Inui M., Appl Microbiol Biotechnol 100(1), 2016
PMID: 26496920
The crystal structures of apo and cAMP-bound GlxR from Corynebacterium glutamicum reveal structural and dynamic changes upon cAMP binding in CRP/FNR family transcription factors.
Townsend PD, Jungwirth B, Pojer F, Bußmann M, Money VA, Cole ST, Pühler A, Tauch A, Bott M, Cann MJ, Pohl E., PLoS One 9(12), 2014
PMID: 25469635
The TetR family of regulators.
Cuthbertson L, Nodwell JR., Microbiol Mol Biol Rev 77(3), 2013
PMID: 24006471
Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032.
Mentz A, Neshat A, Pfeifer-Sancar K, Pühler A, Rückert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24138339
The FHA domain of OdhI interacts with the carboxyterminal 2-oxoglutarate dehydrogenase domain of OdhA in Corynebacterium glutamicum.
Krawczyk S, Raasch K, Schultz C, Hoffelder M, Eggeling L, Bott M., FEBS Lett 584(8), 2010
PMID: 20303957
Rapid functional screening of Streptomyces coelicolor regulators by use of a pH indicator and application to the MarR-like regulator AbsC.
Yang YH, Song E, Lee BR, Kim EJ, Park SH, Kim YG, Lee CS, Kim BG., Appl Environ Microbiol 76(11), 2010
PMID: 20382814
A comprehensive analysis of structural and sequence conservation in the TetR family transcriptional regulators.
Yu Z, Reichheld SE, Savchenko A, Parkinson J, Davidson AR., J Mol Biol 400(4), 2010
PMID: 20595046
DNA binding by Corynebacterium glutamicum TetR-type transcription regulator AmtR.
Muhl D, Jessberger N, Hasselt K, Jardin C, Sticht H, Burkovski A., BMC Mol Biol 10(), 2009
PMID: 19627583
Phosphinothricin-tripeptide biosynthesis: an original version of bacterial secondary metabolism?
Schinko E, Schad K, Eys S, Keller U, Wohlleben W., Phytochemistry 70(15-16), 2009
PMID: 19878959
Transcriptionally regulated adhA gene encodes alcohol dehydrogenase required for ethanol and n-propanol utilization in Corynebacterium glutamicum R.
Kotrbova-Kozak A, Kotrba P, Inui M, Sajdok J, Yukawa H., Appl Microbiol Biotechnol 76(6), 2007
PMID: 17646983
Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum.
Letek M, Valbuena N, Ramos A, Ordóñez E, Gil JA, Mateos LM., J Bacteriol 188(2), 2006
PMID: 16385030
Emerging Corynebacterium glutamicum systems biology.
Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W., J Biotechnol 124(1), 2006
PMID: 16406159
The DtxR regulon of Corynebacterium glutamicum.
Wennerhold J, Bott M., J Bacteriol 188(8), 2006
PMID: 16585752
Genetic characterization of the resorcinol catabolic pathway in Corynebacterium glutamicum.
Huang Y, Zhao KX, Shen XH, Chaudhry MT, Jiang CY, Liu SJ., Appl Environ Microbiol 72(11), 2006
PMID: 16963551
The TetR family of transcriptional repressors.
Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R., Microbiol Mol Biol Rev 69(2), 2005
PMID: 15944459
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl Environ Microbiol 71(10), 2005
PMID: 16204505

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 15494411
PubMed | Europe PMC

Suchen in

Google Scholar