Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation
Krings E, Krumbach K, Bathe B, Kelle R, Wendisch VF, Sahm H, Eggeling L (2006)
Journal of Bacteriology 188(23): 8054-8061.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Krings, E.;
Krumbach, K.;
Bathe, B.;
Kelle, R.;
Wendisch, Volker F.UniBi ;
Sahm, H.;
Eggeling, L.
Einrichtung
Abstract / Bemerkung
Although numerous bacteria possess genes annotated iol in their genomes, there have been very few studies on the possibly associated myo-inositol metabolism and its significance for the cell. We found that Corynebacterium glutamicum utilizes myo-inositol as a carbon and energy source, enabling proliferation with a high maximum rate of 0.35 h(-1). Whole-genome DNA microarray analysis revealed that 31 genes respond to myo-inositol utilization, with 21 of them being localized in two clusters of > 14 kb. A set of genomic mutations and functional studies yielded the result that some genes in the two clusters are redundant, and only cluster I is necessary for catabolizing the polyol. There are three genes which encode carriers belonging to the major facilitator superfamily and which exhibit a > 12-fold increased mRNA level on myo-inositol. As revealed by mutant characterizations, one carrier is not involved in myo-inositol uptake whereas the other two are active and can completely replace each other with apparent K(m)s for myo-inositol as a substrate of 0.20 mM and 0.45 mM, respectively. Interestingly, upon utilization of myo-inositol, the L-lysine yield is 0.10 mol/mol, as opposed to 0.30 mol/mol, with glucose as the substrate. This is probably not only due to myo-inositol metabolism alone since a mixture of 187 mM glucose and 17 mM myo-inositol, where the polyol only contributes 8% of the total carbon, reduced the L-lysine yield by 29%. Moreover, genome comparisons with other bacteria highlight the core genes required for growth on myo-inositol, whose metabolism is still weakly defined.
Stichworte
expression;
pathway;
enzyme;
dehydrogenase;
bacillus-subtilis;
escherichia-coli;
mycobacterium-tuberculosis;
acid;
operon;
glucose
Erscheinungsjahr
2006
Zeitschriftentitel
Journal of Bacteriology
Band
188
Ausgabe
23
Seite(n)
8054-8061
ISSN
0021-9193
Page URI
https://pub.uni-bielefeld.de/record/1895091
Zitieren
Krings E, Krumbach K, Bathe B, et al. Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation. Journal of Bacteriology. 2006;188(23):8054-8061.
Krings, E., Krumbach, K., Bathe, B., Kelle, R., Wendisch, V. F., Sahm, H., & Eggeling, L. (2006). Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation. Journal of Bacteriology, 188(23), 8054-8061. https://doi.org/10.1128/Jb.00935-06
Krings, E., Krumbach, K., Bathe, B., Kelle, R., Wendisch, Volker F., Sahm, H., and Eggeling, L. 2006. “Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation”. Journal of Bacteriology 188 (23): 8054-8061.
Krings, E., Krumbach, K., Bathe, B., Kelle, R., Wendisch, V. F., Sahm, H., and Eggeling, L. (2006). Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation. Journal of Bacteriology 188, 8054-8061.
Krings, E., et al., 2006. Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation. Journal of Bacteriology, 188(23), p 8054-8061.
E. Krings, et al., “Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation”, Journal of Bacteriology, vol. 188, 2006, pp. 8054-8061.
Krings, E., Krumbach, K., Bathe, B., Kelle, R., Wendisch, V.F., Sahm, H., Eggeling, L.: Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation. Journal of Bacteriology. 188, 8054-8061 (2006).
Krings, E., Krumbach, K., Bathe, B., Kelle, R., Wendisch, Volker F., Sahm, H., and Eggeling, L. “Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation”. Journal of Bacteriology 188.23 (2006): 8054-8061.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
38 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Myo-inositol-1-phosphate synthase (Ino-1) functions as a protection mechanism in Corynebacterium glutamicum under oxidative stress.
Chen C, Chen K, Su T, Zhang B, Li G, Pan J, Si M., Microbiologyopen 8(5), 2019
PMID: 30270521
Chen C, Chen K, Su T, Zhang B, Li G, Pan J, Si M., Microbiologyopen 8(5), 2019
PMID: 30270521
Impact of mycolic acid deficiency on cells of Corynebacterium glutamicum ATCC13869.
Gao Y, Hu X, Wang J, Li H, Wang X., Biotechnol Appl Biochem 65(3), 2018
PMID: 29072327
Gao Y, Hu X, Wang J, Li H, Wang X., Biotechnol Appl Biochem 65(3), 2018
PMID: 29072327
Expanding lysine industry: industrial biomanufacturing of lysine and its derivatives.
Cheng J, Chen P, Song A, Wang D, Wang Q., J Ind Microbiol Biotechnol 45(8), 2018
PMID: 29654382
Cheng J, Chen P, Song A, Wang D, Wang Q., J Ind Microbiol Biotechnol 45(8), 2018
PMID: 29654382
Bacillus subtilis iolU encodes an additional NADP+-dependent scyllo-inositol dehydrogenase.
Kang DM, Tanaka K, Takenaka S, Ishikawa S, Yoshida KI., Biosci Biotechnol Biochem 81(5), 2017
PMID: 28043209
Kang DM, Tanaka K, Takenaka S, Ishikawa S, Yoshida KI., Biosci Biotechnol Biochem 81(5), 2017
PMID: 28043209
Formation of xylitol and xylitol-5-phosphate and its impact on growth of d-xylose-utilizing Corynebacterium glutamicum strains.
Radek A, Müller MF, Gätgens J, Eggeling L, Krumbach K, Marienhagen J, Noack S., J Biotechnol 231(), 2016
PMID: 27297548
Radek A, Müller MF, Gätgens J, Eggeling L, Krumbach K, Marienhagen J, Noack S., J Biotechnol 231(), 2016
PMID: 27297548
Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.
Pérez-García F, Peters-Wendisch P, Wendisch VF., Appl Microbiol Biotechnol 100(18), 2016
PMID: 27345060
Pérez-García F, Peters-Wendisch P, Wendisch VF., Appl Microbiol Biotechnol 100(18), 2016
PMID: 27345060
Corynebacterium glutamicum possesses β-N-acetylglucosaminidase.
Matano C, Kolkenbrock S, Hamer SN, Sgobba E, Moerschbacher BM, Wendisch VF., BMC Microbiol 16(1), 2016
PMID: 27492186
Matano C, Kolkenbrock S, Hamer SN, Sgobba E, Moerschbacher BM, Wendisch VF., BMC Microbiol 16(1), 2016
PMID: 27492186
Comparative proteome analysis of global effect of POS5 and zwf-ppnK overexpression in L-isoleucine producing Corynebacterium glutamicum ssp. lactofermentum.
Shi F, Li K, Li Y., Biotechnol Lett 37(5), 2015
PMID: 25650341
Shi F, Li K, Li Y., Biotechnol Lett 37(5), 2015
PMID: 25650341
A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum.
Eggeling L, Bott M., Appl Microbiol Biotechnol 99(8), 2015
PMID: 25761623
Eggeling L, Bott M., Appl Microbiol Biotechnol 99(8), 2015
PMID: 25761623
Mutations and genomic islands can explain the strain dependency of sugar utilization in 21 strains of Propionibacterium freudenreichii.
Loux V, Mariadassou M, Almeida S, Chiapello H, Hammani A, Buratti J, Gendrault A, Barbe V, Aury JM, Deutsch SM, Parayre S, Madec MN, Chuat V, Jan G, Peterlongo P, Azevedo V, Le Loir Y, Falentin H., BMC Genomics 16(), 2015
PMID: 25886522
Loux V, Mariadassou M, Almeida S, Chiapello H, Hammani A, Buratti J, Gendrault A, Barbe V, Aury JM, Deutsch SM, Parayre S, Madec MN, Chuat V, Jan G, Peterlongo P, Azevedo V, Le Loir Y, Falentin H., BMC Genomics 16(), 2015
PMID: 25886522
Increasing succinic acid production using the PTS-independent glucose transport system in a Corynebacterium glutamicum PTS-defective mutant.
Zhou Z, Wang C, Xu H, Chen Z, Cai H., J Ind Microbiol Biotechnol 42(7), 2015
PMID: 25952119
Zhou Z, Wang C, Xu H, Chen Z, Cai H., J Ind Microbiol Biotechnol 42(7), 2015
PMID: 25952119
Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production.
Peters-Wendisch P, Götker S, Heider SA, Komati Reddy G, Nguyen AQ, Stansen KC, Wendisch VF., J Biotechnol 192 Pt B(), 2014
PMID: 24486440
Peters-Wendisch P, Götker S, Heider SA, Komati Reddy G, Nguyen AQ, Stansen KC, Wendisch VF., J Biotechnol 192 Pt B(), 2014
PMID: 24486440
Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Krämer R, Wendisch VF, Seibold GM., Appl Microbiol Biotechnol 98(12), 2014
PMID: 24668244
Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Krämer R, Wendisch VF, Seibold GM., Appl Microbiol Biotechnol 98(12), 2014
PMID: 24668244
Investigation of ptsG gene in response to xylose utilization in Corynebacterium glutamicum.
Wang C, Cai H, Zhou Z, Zhang K, Chen Z, Chen Y, Wan H, Ouyang P., J Ind Microbiol Biotechnol 41(8), 2014
PMID: 24859809
Wang C, Cai H, Zhou Z, Zhang K, Chen Z, Chen Y, Wan H, Ouyang P., J Ind Microbiol Biotechnol 41(8), 2014
PMID: 24859809
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2013
PMID: 23164409
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2013
PMID: 23164409
Novel inositol catabolic pathway in Thermotoga maritima.
Rodionova IA, Leyn SA, Burkart MD, Boucher N, Noll KM, Osterman AL, Rodionov DA., Environ Microbiol 15(8), 2013
PMID: 23441918
Rodionova IA, Leyn SA, Burkart MD, Boucher N, Noll KM, Osterman AL, Rodionov DA., Environ Microbiol 15(8), 2013
PMID: 23441918
myo-inositol and D-ribose ligand discrimination in an ABC periplasmic binding protein.
Herrou J, Crosson S., J Bacteriol 195(10), 2013
PMID: 23504019
Herrou J, Crosson S., J Bacteriol 195(10), 2013
PMID: 23504019
Complex regulation of the phosphoenolpyruvate carboxykinase gene pck and characterization of its GntR-type regulator IolR as a repressor of myo-inositol utilization genes in Corynebacterium glutamicum.
Klaffl S, Brocker M, Kalinowski J, Eikmanns BJ, Bott M., J Bacteriol 195(18), 2013
PMID: 23873914
Klaffl S, Brocker M, Kalinowski J, Eikmanns BJ, Bott M., J Bacteriol 195(18), 2013
PMID: 23873914
Implication of lateral genetic transfer in the emergence of Aeromonas hydrophila isolates of epidemic outbreaks in channel catfish.
Hossain MJ, Waldbieser GC, Sun D, Capps NK, Hemstreet WB, Carlisle K, Griffin MJ, Khoo L, Goodwin AE, Sonstegard TS, Schroeder S, Hayden K, Newton JC, Terhune JS, Liles MR., PLoS One 8(11), 2013
PMID: 24278351
Hossain MJ, Waldbieser GC, Sun D, Capps NK, Hemstreet WB, Carlisle K, Griffin MJ, Khoo L, Goodwin AE, Sonstegard TS, Schroeder S, Hayden K, Newton JC, Terhune JS, Liles MR., PLoS One 8(11), 2013
PMID: 24278351
IpsA, a novel LacI-type regulator, is required for inositol-derived lipid formation in Corynebacteria and Mycobacteria.
Baumgart M, Luder K, Grover S, Gätgens C, Besra GS, Frunzke J., BMC Biol 11(), 2013
PMID: 24377418
Baumgart M, Luder K, Grover S, Gätgens C, Besra GS, Frunzke J., BMC Biol 11(), 2013
PMID: 24377418
Three inositol dehydrogenases involved in utilization and interconversion of inositol stereoisomers in a thermophile, Geobacillus kaustophilus HTA426.
Yoshida K, Sanbongi A, Murakami A, Suzuki H, Takenaka S, Takami H., Microbiology 158(pt 8), 2012
PMID: 22609753
Yoshida K, Sanbongi A, Murakami A, Suzuki H, Takenaka S, Takami H., Microbiology 158(pt 8), 2012
PMID: 22609753
Sugar transport systems in Corynebacterium glutamicum: features and applications to strain development.
Ikeda M., Appl Microbiol Biotechnol 96(5), 2012
PMID: 23081775
Ikeda M., Appl Microbiol Biotechnol 96(5), 2012
PMID: 23081775
Bistability in myo-inositol utilization by Salmonella enterica serovar Typhimurium.
Kröger C, Srikumar S, Ellwart J, Fuchs TM., J Bacteriol 193(6), 2011
PMID: 21239589
Kröger C, Srikumar S, Ellwart J, Fuchs TM., J Bacteriol 193(6), 2011
PMID: 21239589
Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum.
Ikeda M, Mizuno Y, Awane S, Hayashi M, Mitsuhashi S, Takeno S., Appl Microbiol Biotechnol 90(4), 2011
PMID: 21452034
Ikeda M, Mizuno Y, Awane S, Hayashi M, Mitsuhashi S, Takeno S., Appl Microbiol Biotechnol 90(4), 2011
PMID: 21452034
The ncgl1108 (PheP (Cg)) gene encodes a new L-Phe transporter in Corynebacterium glutamicum.
Zhao Z, Ding JY, Li T, Zhou NY, Liu SJ., Appl Microbiol Biotechnol 90(6), 2011
PMID: 21468701
Zhao Z, Ding JY, Li T, Zhou NY, Liu SJ., Appl Microbiol Biotechnol 90(6), 2011
PMID: 21468701
Phosphotransferase system-independent glucose utilization in corynebacterium glutamicum by inositol permeases and glucokinases.
Lindner SN, Seibold GM, Henrich A, Krämer R, Wendisch VF., Appl Environ Microbiol 77(11), 2011
PMID: 21478323
Lindner SN, Seibold GM, Henrich A, Krämer R, Wendisch VF., Appl Environ Microbiol 77(11), 2011
PMID: 21478323
Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM., Appl Microbiol Biotechnol 92(5), 2011
PMID: 21796382
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM., Appl Microbiol Biotechnol 92(5), 2011
PMID: 21796382
myo-Inositol transport by Salmonella enterica serovar Typhimurium.
Kröger C, Stolz J, Fuchs TM., Microbiology 156(pt 1), 2010
PMID: 19833776
Kröger C, Stolz J, Fuchs TM., Microbiology 156(pt 1), 2010
PMID: 19833776
Identification of two scyllo-inositol dehydrogenases in Bacillus subtilis.
Morinaga T, Ashida H, Yoshida K., Microbiology 156(pt 5), 2010
PMID: 20133360
Morinaga T, Ashida H, Yoshida K., Microbiology 156(pt 5), 2010
PMID: 20133360
Transcriptional regulation of gene expression in Corynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network.
Schröder J, Tauch A., FEMS Microbiol Rev 34(5), 2010
PMID: 20491930
Schröder J, Tauch A., FEMS Microbiol Rev 34(5), 2010
PMID: 20491930
Structural investigation of myo-inositol dehydrogenase from Bacillus subtilis: implications for catalytic mechanism and inositol dehydrogenase subfamily classification.
van Straaten KE, Zheng H, Palmer DR, Sanders DA., Biochem J 432(2), 2010
PMID: 20809899
van Straaten KE, Zheng H, Palmer DR, Sanders DA., Biochem J 432(2), 2010
PMID: 20809899
Characterization of the myo-inositol utilization island of Salmonella enterica serovar Typhimurium.
Kröger C, Fuchs TM., J Bacteriol 191(2), 2009
PMID: 19011032
Kröger C, Fuchs TM., J Bacteriol 191(2), 2009
PMID: 19011032
Strategies for acquiring the phospholipid metabolite inositol in pathogenic bacteria, fungi and protozoa: making it and taking it.
Reynolds TB., Microbiology 155(pt 5), 2009
PMID: 19383710
Reynolds TB., Microbiology 155(pt 5), 2009
PMID: 19383710
Inositol polyphosphates: a new frontier for regulating gene expression.
Alcázar-Román AR, Wente SR., Chromosoma 117(1), 2008
PMID: 17943301
Alcázar-Román AR, Wente SR., Chromosoma 117(1), 2008
PMID: 17943301
Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum.
Rittmann D, Lindner SN, Wendisch VF., Appl Environ Microbiol 74(20), 2008
PMID: 18757581
Rittmann D, Lindner SN, Wendisch VF., Appl Environ Microbiol 74(20), 2008
PMID: 18757581
Genetic and computational identification of a conserved bacterial metabolic module.
Boutte CC, Srinivasan BS, Flannick JA, Novak AF, Martens AT, Batzoglou S, Viollier PH, Crosson S., PLoS Genet 4(12), 2008
PMID: 19096521
Boutte CC, Srinivasan BS, Flannick JA, Novak AF, Martens AT, Batzoglou S, Viollier PH, Crosson S., PLoS Genet 4(12), 2008
PMID: 19096521
Identification of a gene cluster enabling Lactobacillus casei BL23 to utilize myo-inositol.
Yebra MJ, Zúñiga M, Beaufils S, Pérez-Martínez G, Deutscher J, Monedero V., Appl Environ Microbiol 73(12), 2007
PMID: 17449687
Yebra MJ, Zúñiga M, Beaufils S, Pérez-Martínez G, Deutscher J, Monedero V., Appl Environ Microbiol 73(12), 2007
PMID: 17449687
Genomic diversity in Staphylococcus xylosus.
Dordet-Frisoni E, Dorchies G, De Araujo C, Talon R, Leroy S., Appl Environ Microbiol 73(22), 2007
PMID: 17890333
Dordet-Frisoni E, Dorchies G, De Araujo C, Talon R, Leroy S., Appl Environ Microbiol 73(22), 2007
PMID: 17890333
31 References
Daten bereitgestellt von Europe PubMed Central.
Identification of a novel arabinofuranosyltransferase (AftA) involved in cell wall arabinan biosynthesis in Mycobacterium tuberculosis.
Alderwick LJ, Seidel M, Sahm H, Besra GS, Eggeling L., J. Biol. Chem. 281(23), 2006
PMID: 16595677
Alderwick LJ, Seidel M, Sahm H, Besra GS, Eggeling L., J. Biol. Chem. 281(23), 2006
PMID: 16595677
The pathway of myo-inositol degradation in Aerobacter aerogenes. Conversion of 2-deoxy-5-keto-D-gluconic acid to glycolytic intermediates.
Anderson WA, Magasanik B., J. Biol. Chem. 246(18), 1971
PMID: 4328832
Anderson WA, Magasanik B., J. Biol. Chem. 246(18), 1971
PMID: 4328832
The Pfam protein families database.
Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR., Nucleic Acids Res. 32(Database issue), 2004
PMID: 14681378
Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR., Nucleic Acids Res. 32(Database issue), 2004
PMID: 14681378
Expression control and specificity of the basic amino acid exporter LysE of Corynebacterium glutamicum.
Bellmann A, Vrljic M, Patek M, Sahm H, Kramer R, Eggeling L., Microbiology (Reading, Engl.) 147(Pt 7), 2001
PMID: 11429454
Bellmann A, Vrljic M, Patek M, Sahm H, Kramer R, Eggeling L., Microbiology (Reading, Engl.) 147(Pt 7), 2001
PMID: 11429454
AUTHOR UNKNOWN, 2001
The formaldehyde dehydrogenase of Rhodococcus erythropolis, a trimeric enzyme requiring a cofactor and active with alcohols.
Eggeling L, Sahm H., Eur. J. Biochem. 150(1), 1985
PMID: 3160586
Eggeling L, Sahm H., Eur. J. Biochem. 150(1), 1985
PMID: 3160586
AUTHOR UNKNOWN, 2005
Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness.
Fry J, Wood M, Poole PS., Mol. Plant Microbe Interact. 14(8), 2001
PMID: 11497462
Fry J, Wood M, Poole PS., Mol. Plant Microbe Interact. 14(8), 2001
PMID: 11497462
Bacillus subtilis inositol dehydrogenase-encoding gene (idh): sequence and expression in Escherichia coli.
Fujita Y, Shindo K, Miwa Y, Yoshida K., Gene 108(1), 1991
PMID: 1761221
Fujita Y, Shindo K, Miwa Y, Yoshida K., Gene 108(1), 1991
PMID: 1761221
A functional myo-inositol catabolism pathway is essential for rhizopine utilization by Sinorhizobium meliloti.
Galbraith MP, Feng SF, Borneman J, Triplett EW, de Bruijn FJ, Rossbach S., Microbiology (Reading, Engl.) 144 ( Pt 10)(), 1998
PMID: 9802033
Galbraith MP, Feng SF, Borneman J, Triplett EW, de Bruijn FJ, Rossbach S., Microbiology (Reading, Engl.) 144 ( Pt 10)(), 1998
PMID: 9802033
Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis.
Gande R, Gibson KJ, Brown AK, Krumbach K, Dover LG, Sahm H, Shioyama S, Oikawa T, Besra GS, Eggeling L., J. Biol. Chem. 279(43), 2004
PMID: 15308633
Gande R, Gibson KJ, Brown AK, Krumbach K, Dover LG, Sahm H, Shioyama S, Oikawa T, Besra GS, Eggeling L., J. Biol. Chem. 279(43), 2004
PMID: 15308633
Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1,6-bisphosphatase.
Georgi T, Rittmann D, Wendisch VF., Metab. Eng. 7(4), 2005
PMID: 15979917
Georgi T, Rittmann D, Wendisch VF., Metab. Eng. 7(4), 2005
PMID: 15979917
rRNA transcription and growth rate-dependent regulation of ribosome synthesis in Escherichia coli.
Gourse RL, Gaal T, Bartlett MS, Appleman JA, Ross W., Annu. Rev. Microbiol. 50(), 1996
PMID: 8905094
Gourse RL, Gaal T, Bartlett MS, Appleman JA, Ross W., Annu. Rev. Microbiol. 50(), 1996
PMID: 8905094
The cytosolic, cell surface and extracellular proteomes of the biotechnologically important soil bacterium Corynebacterium efficiens YS-314 in comparison to those of Corynebacterium glutamicum ATCC 13032.
Hansmeier N, Chao TC, Puhler A, Tauch A, Kalinowski J., Proteomics 6(1), 2006
PMID: 16302278
Hansmeier N, Chao TC, Puhler A, Tauch A, Kalinowski J., Proteomics 6(1), 2006
PMID: 16302278
A functional myo-inositol dehydrogenase gene is required for efficient nitrogen fixation and competitiveness of Sinorhizobium fredii USDA191 to nodulate soybean (Glycine max [L.] Merr.).
Jiang G, Krishnan AH, Kim YW, Wacek TJ, Krishnan HB., J. Bacteriol. 183(8), 2001
PMID: 11274120
Jiang G, Krishnan AH, Kim YW, Wacek TJ, Krishnan HB., J. Bacteriol. 183(8), 2001
PMID: 11274120
Organization and transcriptional regulation of myo-inositol operon in Clostridium perfringens.
Kawsar HI, Ohtani K, Okumura K, Hayashi H, Shimizu T., FEMS Microbiol. Lett. 235(2), 2004
PMID: 15183876
Kawsar HI, Ohtani K, Okumura K, Hayashi H, Shimizu T., FEMS Microbiol. Lett. 235(2), 2004
PMID: 15183876
Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose.
Kiefer P, Heinzle E, Zelder O, Wittmann C., Appl. Environ. Microbiol. 70(1), 2004
PMID: 14711646
Kiefer P, Heinzle E, Zelder O, Wittmann C., Appl. Environ. Microbiol. 70(1), 2004
PMID: 14711646
Enzymatic adaptation in the metabolism of cyclitols in Aerobacter aerogenes.
MAGASANIK B., J. Biol. Chem. 205(2), 1953
PMID: 13129279
MAGASANIK B., J. Biol. Chem. 205(2), 1953
PMID: 13129279
Crystal structure of inositol 1-phosphate synthase from Mycobacterium tuberculosis, a key enzyme in phosphatidylinositol synthesis.
Norman RA, McAlister MS, Murray-Rust J, Movahedzadeh F, Stoker NG, McDonald NQ., Structure 10(3), 2002
PMID: 12005437
Norman RA, McAlister MS, Murray-Rust J, Movahedzadeh F, Stoker NG, McDonald NQ., Structure 10(3), 2002
PMID: 12005437
AUTHOR UNKNOWN, 1989
Mycothiol is essential for growth of Mycobacterium tuberculosis Erdman.
Sareen D, Newton GL, Fahey RC, Buchmeier NA., J. Bacteriol. 185(22), 2003
PMID: 14594852
Sareen D, Newton GL, Fahey RC, Buchmeier NA., J. Bacteriol. 185(22), 2003
PMID: 14594852
Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum.
Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A., Gene 145(1), 1994
PMID: 8045426
Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A., Gene 145(1), 1994
PMID: 8045426
AUTHOR UNKNOWN, 1992
Flux partitioning in the split pathway of lysine synthesis in Corynebacterium glutamicum. Quantification by 13C- and 1H-NMR spectroscopy.
Sonntag K, Eggeling L, De Graaf AA, Sahm H., Eur. J. Biochem. 213(3), 1993
PMID: 8504824
Sonntag K, Eggeling L, De Graaf AA, Sahm H., Eur. J. Biochem. 213(3), 1993
PMID: 8504824
AUTHOR UNKNOWN, 2004
Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays.
Wendisch VF., J. Biotechnol. 104(1-3), 2003
PMID: 12948645
Wendisch VF., J. Biotechnol. 104(1-3), 2003
PMID: 12948645
Identification of two myo-inositol transporter genes of Bacillus subtilis.
Yoshida K, Yamamoto Y, Omae K, Yamamoto M, Fujita Y., J. Bacteriol. 184(4), 2002
PMID: 11807058
Yoshida K, Yamamoto Y, Omae K, Yamamoto M, Fujita Y., J. Bacteriol. 184(4), 2002
PMID: 11807058
Organization and transcription of the myo-inositol operon, iol, of Bacillus subtilis.
Yoshida KI, Aoyama D, Ishio I, Shibayama T, Fujita Y., J. Bacteriol. 179(14), 1997
PMID: 9226270
Yoshida KI, Aoyama D, Ishio I, Shibayama T, Fujita Y., J. Bacteriol. 179(14), 1997
PMID: 9226270
Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis.
Yoshida K, Kobayashi K, Miwa Y, Kang CM, Matsunaga M, Yamaguchi H, Tojo S, Yamamoto M, Nishi R, Ogasawara N, Nakayama T, Fujita Y., Nucleic Acids Res. 29(3), 2001
PMID: 11160890
Yoshida K, Kobayashi K, Miwa Y, Kang CM, Matsunaga M, Yamaguchi H, Tojo S, Yamamoto M, Nishi R, Ogasawara N, Nakayama T, Fujita Y., Nucleic Acids Res. 29(3), 2001
PMID: 11160890
The fifth gene of the iol operon of Bacillus subtilis, iolE, encodes 2-keto-myo-inositol dehydratase.
Yoshida K, Yamaguchi M, Ikeda H, Omae K, Tsurusaki K, Fujita Y., Microbiology (Reading, Engl.) 150(Pt 3), 2004
PMID: 14993306
Yoshida K, Yamaguchi M, Ikeda H, Omae K, Tsurusaki K, Fujita Y., Microbiology (Reading, Engl.) 150(Pt 3), 2004
PMID: 14993306
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 16997948
PubMed | Europe PMC
Suchen in