Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation

Krings E, Krumbach K, Bathe B, Kelle R, Wendisch VF, Sahm H, Eggeling L (2006)
Journal of Bacteriology 188(23): 8054-8061.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Krings, E.; Krumbach, K.; Bathe, B.; Kelle, R.; Wendisch, Volker F.UniBi ; Sahm, H.; Eggeling, L.
Abstract / Bemerkung
Although numerous bacteria possess genes annotated iol in their genomes, there have been very few studies on the possibly associated myo-inositol metabolism and its significance for the cell. We found that Corynebacterium glutamicum utilizes myo-inositol as a carbon and energy source, enabling proliferation with a high maximum rate of 0.35 h(-1). Whole-genome DNA microarray analysis revealed that 31 genes respond to myo-inositol utilization, with 21 of them being localized in two clusters of > 14 kb. A set of genomic mutations and functional studies yielded the result that some genes in the two clusters are redundant, and only cluster I is necessary for catabolizing the polyol. There are three genes which encode carriers belonging to the major facilitator superfamily and which exhibit a > 12-fold increased mRNA level on myo-inositol. As revealed by mutant characterizations, one carrier is not involved in myo-inositol uptake whereas the other two are active and can completely replace each other with apparent K(m)s for myo-inositol as a substrate of 0.20 mM and 0.45 mM, respectively. Interestingly, upon utilization of myo-inositol, the L-lysine yield is 0.10 mol/mol, as opposed to 0.30 mol/mol, with glucose as the substrate. This is probably not only due to myo-inositol metabolism alone since a mixture of 187 mM glucose and 17 mM myo-inositol, where the polyol only contributes 8% of the total carbon, reduced the L-lysine yield by 29%. Moreover, genome comparisons with other bacteria highlight the core genes required for growth on myo-inositol, whose metabolism is still weakly defined.
Stichworte
expression; pathway; enzyme; dehydrogenase; bacillus-subtilis; escherichia-coli; mycobacterium-tuberculosis; acid; operon; glucose
Erscheinungsjahr
2006
Zeitschriftentitel
Journal of Bacteriology
Band
188
Ausgabe
23
Seite(n)
8054-8061
ISSN
0021-9193
Page URI
https://pub.uni-bielefeld.de/record/1895091

Zitieren

Krings E, Krumbach K, Bathe B, et al. Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation. Journal of Bacteriology. 2006;188(23):8054-8061.
Krings, E., Krumbach, K., Bathe, B., Kelle, R., Wendisch, V. F., Sahm, H., & Eggeling, L. (2006). Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation. Journal of Bacteriology, 188(23), 8054-8061. https://doi.org/10.1128/Jb.00935-06
Krings, E., Krumbach, K., Bathe, B., Kelle, R., Wendisch, Volker F., Sahm, H., and Eggeling, L. 2006. “Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation”. Journal of Bacteriology 188 (23): 8054-8061.
Krings, E., Krumbach, K., Bathe, B., Kelle, R., Wendisch, V. F., Sahm, H., and Eggeling, L. (2006). Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation. Journal of Bacteriology 188, 8054-8061.
Krings, E., et al., 2006. Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation. Journal of Bacteriology, 188(23), p 8054-8061.
E. Krings, et al., “Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation”, Journal of Bacteriology, vol. 188, 2006, pp. 8054-8061.
Krings, E., Krumbach, K., Bathe, B., Kelle, R., Wendisch, V.F., Sahm, H., Eggeling, L.: Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation. Journal of Bacteriology. 188, 8054-8061 (2006).
Krings, E., Krumbach, K., Bathe, B., Kelle, R., Wendisch, Volker F., Sahm, H., and Eggeling, L. “Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation”. Journal of Bacteriology 188.23 (2006): 8054-8061.

38 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Impact of mycolic acid deficiency on cells of Corynebacterium glutamicum ATCC13869.
Gao Y, Hu X, Wang J, Li H, Wang X., Biotechnol Appl Biochem 65(3), 2018
PMID: 29072327
Expanding lysine industry: industrial biomanufacturing of lysine and its derivatives.
Cheng J, Chen P, Song A, Wang D, Wang Q., J Ind Microbiol Biotechnol 45(8), 2018
PMID: 29654382
Bacillus subtilis iolU encodes an additional NADP+-dependent scyllo-inositol dehydrogenase.
Kang DM, Tanaka K, Takenaka S, Ishikawa S, Yoshida KI., Biosci Biotechnol Biochem 81(5), 2017
PMID: 28043209
Formation of xylitol and xylitol-5-phosphate and its impact on growth of d-xylose-utilizing Corynebacterium glutamicum strains.
Radek A, Müller MF, Gätgens J, Eggeling L, Krumbach K, Marienhagen J, Noack S., J Biotechnol 231(), 2016
PMID: 27297548
Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.
Pérez-García F, Peters-Wendisch P, Wendisch VF., Appl Microbiol Biotechnol 100(18), 2016
PMID: 27345060
Corynebacterium glutamicum possesses β-N-acetylglucosaminidase.
Matano C, Kolkenbrock S, Hamer SN, Sgobba E, Moerschbacher BM, Wendisch VF., BMC Microbiol 16(1), 2016
PMID: 27492186
A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum.
Eggeling L, Bott M., Appl Microbiol Biotechnol 99(8), 2015
PMID: 25761623
Mutations and genomic islands can explain the strain dependency of sugar utilization in 21 strains of Propionibacterium freudenreichii.
Loux V, Mariadassou M, Almeida S, Chiapello H, Hammani A, Buratti J, Gendrault A, Barbe V, Aury JM, Deutsch SM, Parayre S, Madec MN, Chuat V, Jan G, Peterlongo P, Azevedo V, Le Loir Y, Falentin H., BMC Genomics 16(), 2015
PMID: 25886522
Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production.
Peters-Wendisch P, Götker S, Heider SA, Komati Reddy G, Nguyen AQ, Stansen KC, Wendisch VF., J Biotechnol 192 Pt B(), 2014
PMID: 24486440
Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Krämer R, Wendisch VF, Seibold GM., Appl Microbiol Biotechnol 98(12), 2014
PMID: 24668244
Investigation of ptsG gene in response to xylose utilization in Corynebacterium glutamicum.
Wang C, Cai H, Zhou Z, Zhang K, Chen Z, Chen Y, Wan H, Ouyang P., J Ind Microbiol Biotechnol 41(8), 2014
PMID: 24859809
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2013
PMID: 23164409
Novel inositol catabolic pathway in Thermotoga maritima.
Rodionova IA, Leyn SA, Burkart MD, Boucher N, Noll KM, Osterman AL, Rodionov DA., Environ Microbiol 15(8), 2013
PMID: 23441918
Implication of lateral genetic transfer in the emergence of Aeromonas hydrophila isolates of epidemic outbreaks in channel catfish.
Hossain MJ, Waldbieser GC, Sun D, Capps NK, Hemstreet WB, Carlisle K, Griffin MJ, Khoo L, Goodwin AE, Sonstegard TS, Schroeder S, Hayden K, Newton JC, Terhune JS, Liles MR., PLoS One 8(11), 2013
PMID: 24278351
IpsA, a novel LacI-type regulator, is required for inositol-derived lipid formation in Corynebacteria and Mycobacteria.
Baumgart M, Luder K, Grover S, Gätgens C, Besra GS, Frunzke J., BMC Biol 11(), 2013
PMID: 24377418
Three inositol dehydrogenases involved in utilization and interconversion of inositol stereoisomers in a thermophile, Geobacillus kaustophilus HTA426.
Yoshida K, Sanbongi A, Murakami A, Suzuki H, Takenaka S, Takami H., Microbiology 158(pt 8), 2012
PMID: 22609753
Bistability in myo-inositol utilization by Salmonella enterica serovar Typhimurium.
Kröger C, Srikumar S, Ellwart J, Fuchs TM., J Bacteriol 193(6), 2011
PMID: 21239589
The ncgl1108 (PheP (Cg)) gene encodes a new L-Phe transporter in Corynebacterium glutamicum.
Zhao Z, Ding JY, Li T, Zhou NY, Liu SJ., Appl Microbiol Biotechnol 90(6), 2011
PMID: 21468701
Phosphotransferase system-independent glucose utilization in corynebacterium glutamicum by inositol permeases and glucokinases.
Lindner SN, Seibold GM, Henrich A, Krämer R, Wendisch VF., Appl Environ Microbiol 77(11), 2011
PMID: 21478323
Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM., Appl Microbiol Biotechnol 92(5), 2011
PMID: 21796382
myo-Inositol transport by Salmonella enterica serovar Typhimurium.
Kröger C, Stolz J, Fuchs TM., Microbiology 156(pt 1), 2010
PMID: 19833776
Identification of two scyllo-inositol dehydrogenases in Bacillus subtilis.
Morinaga T, Ashida H, Yoshida K., Microbiology 156(pt 5), 2010
PMID: 20133360
Inositol polyphosphates: a new frontier for regulating gene expression.
Alcázar-Román AR, Wente SR., Chromosoma 117(1), 2008
PMID: 17943301
Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum.
Rittmann D, Lindner SN, Wendisch VF., Appl Environ Microbiol 74(20), 2008
PMID: 18757581
Genetic and computational identification of a conserved bacterial metabolic module.
Boutte CC, Srinivasan BS, Flannick JA, Novak AF, Martens AT, Batzoglou S, Viollier PH, Crosson S., PLoS Genet 4(12), 2008
PMID: 19096521
Identification of a gene cluster enabling Lactobacillus casei BL23 to utilize myo-inositol.
Yebra MJ, Zúñiga M, Beaufils S, Pérez-Martínez G, Deutscher J, Monedero V., Appl Environ Microbiol 73(12), 2007
PMID: 17449687
Genomic diversity in Staphylococcus xylosus.
Dordet-Frisoni E, Dorchies G, De Araujo C, Talon R, Leroy S., Appl Environ Microbiol 73(22), 2007
PMID: 17890333

31 References

Daten bereitgestellt von Europe PubMed Central.

The Pfam protein families database.
Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR., Nucleic Acids Res. 32(Database issue), 2004
PMID: 14681378
Expression control and specificity of the basic amino acid exporter LysE of Corynebacterium glutamicum.
Bellmann A, Vrljic M, Patek M, Sahm H, Kramer R, Eggeling L., Microbiology (Reading, Engl.) 147(Pt 7), 2001
PMID: 11429454
The envelope of mycobacteria.
Brennan PJ, Nikaido H., Annu. Rev. Biochem. 64(), 1995
PMID: 7574484

AUTHOR UNKNOWN, 2001

AUTHOR UNKNOWN, 2005
A functional myo-inositol catabolism pathway is essential for rhizopine utilization by Sinorhizobium meliloti.
Galbraith MP, Feng SF, Borneman J, Triplett EW, de Bruijn FJ, Rossbach S., Microbiology (Reading, Engl.) 144 ( Pt 10)(), 1998
PMID: 9802033
rRNA transcription and growth rate-dependent regulation of ribosome synthesis in Escherichia coli.
Gourse RL, Gaal T, Bartlett MS, Appleman JA, Ross W., Annu. Rev. Microbiol. 50(), 1996
PMID: 8905094
Organization and transcriptional regulation of myo-inositol operon in Clostridium perfringens.
Kawsar HI, Ohtani K, Okumura K, Hayashi H, Shimizu T., FEMS Microbiol. Lett. 235(2), 2004
PMID: 15183876
Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose.
Kiefer P, Heinzle E, Zelder O, Wittmann C., Appl. Environ. Microbiol. 70(1), 2004
PMID: 14711646
Crystal structure of inositol 1-phosphate synthase from Mycobacterium tuberculosis, a key enzyme in phosphatidylinositol synthesis.
Norman RA, McAlister MS, Murray-Rust J, Movahedzadeh F, Stoker NG, McDonald NQ., Structure 10(3), 2002
PMID: 12005437

AUTHOR UNKNOWN, 1989
Mycothiol is essential for growth of Mycobacterium tuberculosis Erdman.
Sareen D, Newton GL, Fahey RC, Buchmeier NA., J. Bacteriol. 185(22), 2003
PMID: 14594852

AUTHOR UNKNOWN, 1992

AUTHOR UNKNOWN, 2004
Identification of two myo-inositol transporter genes of Bacillus subtilis.
Yoshida K, Yamamoto Y, Omae K, Yamamoto M, Fujita Y., J. Bacteriol. 184(4), 2002
PMID: 11807058
Organization and transcription of the myo-inositol operon, iol, of Bacillus subtilis.
Yoshida KI, Aoyama D, Ishio I, Shibayama T, Fujita Y., J. Bacteriol. 179(14), 1997
PMID: 9226270
Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis.
Yoshida K, Kobayashi K, Miwa Y, Kang CM, Matsunaga M, Yamaguchi H, Tojo S, Yamamoto M, Nishi R, Ogasawara N, Nakayama T, Fujita Y., Nucleic Acids Res. 29(3), 2001
PMID: 11160890
The fifth gene of the iol operon of Bacillus subtilis, iolE, encodes 2-keto-myo-inositol dehydratase.
Yoshida K, Yamaguchi M, Ikeda H, Omae K, Tsurusaki K, Fujita Y., Microbiology (Reading, Engl.) 150(Pt 3), 2004
PMID: 14993306
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 16997948
PubMed | Europe PMC

Suchen in

Google Scholar