Two-component systems of Corynebacterium glutamicum: Deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response

Kocan M, Schaffer S, Ishige T, Sorger-Herrmann U, Wendisch VF, Bott M (2006)
Journal of Bacteriology 188(2): 724-732.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor*in
Kocan, M.; Schaffer, S.; Ishige, T.; Sorger-Herrmann, U.; Wendisch, Volker F.UniBi ; Bott, M.
Abstract / Bemerkung
Corynebacterium glutamicum contains genes for 13 two-component signal transduction systems. In order to test for their essentiality and involvement in the adaptive response to phosphate (Pi) starvation, a set of 12 deletion mutants was constructed. One of the mutants was specifically impaired in its ability to grow under Pi limitation, and therefore the genes lacking in this strain were named phoS (encoding the sensor kinase) and phoR (encoding the response regulator). DNA microarray analyses with the C glutamicum wild type and the Delta phoRS mutant supported a role for the PhoRS system in the adaptation to P, starvation. In contrast to the wild type, the Delta phoRS mutant did not induce the known Pi starvation-inducible (psi) genes within 1 hour after a shift from P, excess to Pi limitation, except for the pstSCAB operon, which was still partially induced. This indicates an activator function for PhoR and the existence of at least one additional regulator of the pst operon. Primer extension analysis of selected psi genes (pstS, ugpA, phoR, ushA, and nucH) confirmed the microarray data and provided evidence for positive autoregulation of the phoRS genes.
Stichworte
receptor; proteins; domain; molecular analysis; gene-expression; sensor kinase cita; bacillus-subtilis; binding; metabolism; identification
Erscheinungsjahr
2006
Zeitschriftentitel
Journal of Bacteriology
Band
188
Ausgabe
2
Seite(n)
724-732
ISSN
0021-9193
Page URI
https://pub.uni-bielefeld.de/record/1895082

Zitieren

Kocan M, Schaffer S, Ishige T, Sorger-Herrmann U, Wendisch VF, Bott M. Two-component systems of Corynebacterium glutamicum: Deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response. Journal of Bacteriology. 2006;188(2):724-732.
Kocan, M., Schaffer, S., Ishige, T., Sorger-Herrmann, U., Wendisch, V. F., & Bott, M. (2006). Two-component systems of Corynebacterium glutamicum: Deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response. Journal of Bacteriology, 188(2), 724-732. doi:10.1128/Jb.188.2.724-732.2006
Kocan, M., Schaffer, S., Ishige, T., Sorger-Herrmann, U., Wendisch, V. F., and Bott, M. (2006). Two-component systems of Corynebacterium glutamicum: Deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response. Journal of Bacteriology 188, 724-732.
Kocan, M., et al., 2006. Two-component systems of Corynebacterium glutamicum: Deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response. Journal of Bacteriology, 188(2), p 724-732.
M. Kocan, et al., “Two-component systems of Corynebacterium glutamicum: Deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response”, Journal of Bacteriology, vol. 188, 2006, pp. 724-732.
Kocan, M., Schaffer, S., Ishige, T., Sorger-Herrmann, U., Wendisch, V.F., Bott, M.: Two-component systems of Corynebacterium glutamicum: Deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response. Journal of Bacteriology. 188, 724-732 (2006).
Kocan, M., Schaffer, S., Ishige, T., Sorger-Herrmann, U., Wendisch, Volker F., and Bott, M. “Two-component systems of Corynebacterium glutamicum: Deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response”. Journal of Bacteriology 188.2 (2006): 724-732.

44 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

GlnR positive transcriptional regulation of the phosphate-specific transport system pstSCAB in Amycolatopsis mediterranei U32.
Zhang Y, Zhang Y, Li P, Wang Y, Wang J, Shao Z, Zhao G., Acta Biochim Biophys Sin (Shanghai) 50(8), 2018
PMID: 30007316
The three-component system EsrISR regulates a cell envelope stress response in Corynebacterium glutamicum.
Kleine B, Chattopadhyay A, Polen T, Pinto D, Mascher T, Bott M, Brocker M, Freudl R., Mol Microbiol 106(5), 2017
PMID: 28922502
The Pho regulon: a huge regulatory network in bacteria.
Santos-Beneit F., Front Microbiol 6(), 2015
PMID: 25983732
Regulation of the pstSCAB operon in Corynebacterium glutamicum by the regulator of acetate metabolism RamB.
Sorger-Herrmann U, Taniguchi H, Wendisch VF., BMC Microbiol 15(), 2015
PMID: 26021728
Defects in phosphate acquisition and storage influence virulence of Cryptococcus neoformans.
Kretschmer M, Reiner E, Hu G, Tam N, Oliveira DL, Caza M, Yeon JH, Kim J, Kastrup CJ, Jung WH, Kronstad JW., Infect Immun 82(7), 2014
PMID: 24711572
Identification of Listeria monocytogenes determinants required for biofilm formation.
Alonso AN, Perry KJ, Regeimbal JM, Regan PM, Higgins DE., PLoS One 9(12), 2014
PMID: 25517120
The quantitative proteomic response of Synechocystis sp. PCC6803 to phosphate acclimation.
Fuszard MA, Ow SY, Gan CS, Noirel J, Ternan NG, McMullan G, Biggs CA, Reardon KF, Wright PC., Aquat Biosyst 9(1), 2013
PMID: 23442353
Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032.
Mentz A, Neshat A, Pfeifer-Sancar K, Pühler A, Rückert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24138339
Arabitol metabolism of Corynebacterium glutamicum and its regulation by AtlR.
Laslo T, von Zaluskowski P, Gabris C, Lodd E, Rückert C, Dangel P, Kalinowski J, Auchter M, Seibold G, Eikmanns BJ., J Bacteriol 194(5), 2012
PMID: 22178972
The two-component system ChrSA is crucial for haem tolerance and interferes with HrrSA in haem-dependent gene regulation in Corynebacterium glutamicum.
Heyer A, Gätgens C, Hentschel E, Kalinowski J, Bott M, Frunzke J., Microbiology 158(pt 12), 2012
PMID: 23038807
Control of heme homeostasis in Corynebacterium glutamicum by the two-component system HrrSA.
Frunzke J, Gätgens C, Brocker M, Bott M., J Bacteriol 193(5), 2011
PMID: 21217007
Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production.
Lindner SN, Niederholtmeyer H, Schmitz K, Schoberth SM, Wendisch VF., Appl Microbiol Biotechnol 87(2), 2010
PMID: 20180116
Link between phosphate starvation and glycogen metabolism in Corynebacterium glutamicum, revealed by metabolomics.
Woo HM, Noack S, Seibold GM, Willbold S, Eikmanns BJ, Bott M., Appl Environ Microbiol 76(20), 2010
PMID: 20802079
A 2D reversed-phase x ion-pair reversed-phase HPLC-MALDI TOF/TOF-MS approach for shotgun proteome analysis.
Lasaosa M, Delmotte N, Huber CG, Melchior K, Heinzle E, Tholey A., Anal Bioanal Chem 393(4), 2009
PMID: 19066860
A comprehensive survey of single nucleotide polymorphisms (SNPs) across Mycobacterium bovis strains and M. bovis BCG vaccine strains refines the genealogy and defines a minimal set of SNPs that separate virulent M. bovis strains and M. bovis BCG strains.
Garcia Pelayo MC, Uplekar S, Keniry A, Mendoza Lopez P, Garnier T, Nunez Garcia J, Boschiroli L, Zhou X, Parkhill J, Smith N, Hewinson RG, Cole ST, Gordon SV., Infect Immun 77(5), 2009
PMID: 19289514
Exopolyphosphatases PPX1 and PPX2 from Corynebacterium glutamicum.
Lindner SN, Knebel S, Wesseling H, Schoberth SM, Wendisch VF., Appl Environ Microbiol 75(10), 2009
PMID: 19304823
The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis.
Lamarche MG, Wanner BL, Crépin S, Harel J., FEMS Microbiol Rev 32(3), 2008
PMID: 18248418
The two-component system PhoPR of Clostridium acetobutylicum is involved in phosphate-dependent gene regulation.
Fiedler T, Mix M, Meyer U, Mikkat S, Glocker MO, Bahl H, Fischer RJ., J Bacteriol 190(20), 2008
PMID: 18689481
Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum.
Rittmann D, Lindner SN, Wendisch VF., Appl Environ Microbiol 74(20), 2008
PMID: 18757581
In vitro analysis of the two-component system MtrB-MtrA from Corynebacterium glutamicum.
Möker N, Krämer J, Unden G, Krämer R, Morbach S., J Bacteriol 189(9), 2007
PMID: 17293417
High cell density cultivation of recombinant yeasts and bacteria under non-pressurized and pressurized conditions in stirred tank bioreactors.
Knoll A, Bartsch S, Husemann B, Engel P, Schroer K, Ribeiro B, Stöckmann C, Seletzky J, Büchs J., J Biotechnol 132(2), 2007
PMID: 17681630
The DtxR regulon of Corynebacterium glutamicum.
Wennerhold J, Bott M., J Bacteriol 188(8), 2006
PMID: 16585752
Metabolic activity of Corynebacterium glutamicum grown on L: -lactic acid under stress.
Seletzky JM, Noack U, Fricke J, Hahn S, Büchs J., Appl Microbiol Biotechnol 72(6), 2006
PMID: 16642330
MtrAB-LpqB: a conserved three-component system in actinobacteria?
Hoskisson PA, Hutchings MI., Trends Microbiol 14(10), 2006
PMID: 16934981
Stimulus perception in bacterial signal-transducing histidine kinases.
Mascher T, Helmann JD, Unden G., Microbiol Mol Biol Rev 70(4), 2006
PMID: 17158704

34 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 1967
Regulation of anaerobic citrate metabolism in Klebsiella pneumoniae.
Bott M, Meyer M, Dimroth P., Mol. Microbiol. 18(3), 1995
PMID: 8748036

AUTHOR UNKNOWN, 2005
The transcriptional activator ClgR controls transcription of genes involved in proteolysis and DNA repair in Corynebacterium glutamicum.
Engels S, Ludwig C, Schweitzer JE, Mack C, Bott M, Schaffer S., Mol. Microbiol. 57(2), 2005
PMID: 15978086

AUTHOR UNKNOWN, 2002
The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses.
Ishige T, Krause M, Bott M, Wendisch VF, Sahm H., J. Bacteriol. 185(15), 2003
PMID: 12867461
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
The periplasmic domain of the histidine autokinase CitA functions as a highly specific citrate receptor.
Kaspar S, Perozzo R, Reinelt S, Meyer M, Pfister K, Scapozza L, Bott M., Mol. Microbiol. 33(4), 1999
PMID: 10447894

AUTHOR UNKNOWN, 2002
Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of L-valine.
Lange C, Rittmann D, Wendisch VF, Bott M, Sahm H., Appl. Environ. Microbiol. 69(5), 2003
PMID: 12732517

AUTHOR UNKNOWN, 2005
Formation of volutin granules in Corynebacterium glutamicum.
Pallerla SR, Knebel S, Polen T, Klauth P, Hollender J, Wendisch VF, Schoberth SM., FEMS Microbiol. Lett. 243(1), 2005
PMID: 15668011
Promoters of Corynebacterium glutamicum.
Patek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G., J. Biotechnol. 104(1-3), 2003
PMID: 12948648
The structure of the periplasmic ligand-binding domain of the sensor kinase CitA reveals the first extracellular PAS domain.
Reinelt S, Hofmann E, Gerharz T, Bott M, Madden DR., J. Biol. Chem. 278(40), 2003
PMID: 12867417
Binding of PhoP to promoters of phosphate-regulated genes in Streptomyces coelicolor: identification of PHO boxes.
Sola-Landa A, Rodriguez-Garcia A, Franco-Dominguez E, Martin JF., Mol. Microbiol. 56(5), 2005
PMID: 15882427

AUTHOR UNKNOWN, 1996

AUTHOR UNKNOWN, 2005

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 16385062
PubMed | Europe PMC

Suchen in

Google Scholar