Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation

Kabus A, Georgi T, Wendisch VF, Bott M (2007)
Applied Microbiology and Biotechnology 75(1): 47-53.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Kabus, A.; Georgi, T.; Wendisch, Volker F.UniBi ; Bott, M.
Abstract / Bemerkung
A critical factor in the biotechnological production of (L)-lysine with Corynebacterium glutamicum is the sufficient supply of NADPH. The membrane-integral nicotinamide nucleotide transhydrogenase PntAB of Escherichia coli can use the electrochemical proton gradient across the cytoplasmic membrane to drive the reduction of NADP(+) stop via the oxidation of NADH. As C. glutamicum does not possess such an enzyme, we expressed the E. coli pntAB genes in the genetically defined C. glutamicum lysine-producing strain DM1730, resulting in membrane-associated transhydrogenase activity of 0.7 U/mg protein. When cultivated in minimal medium with 10% (w/v) carbon source, the presence of transhydrogenase slightly reduced glucose consumption, whereas the consumption of fructose, glucose plus fructose, and, in particular, sucrose was stimulated. Biomass was increased by pntAB expression between 10 and 30% on all carbon sources tested. Most importantly, the lysine concentration was increased in the presence of transhydrogenase by similar to 10% on glucose, similar to 70% on fructose, similar to 50% on glucose plus fructose, and even by similar to 300% on sucrose. Thus, the presence of a proton-coupled transhydrogenase was shown to be an efficient way to improve lysine production by C. glutamicum. In contrast, pntAB expression had a negative effect on growth and glutamate production of C. glutamicum wild type.
central metabolism; biochemical-characterization; pntab; nicotinamide nucleotide transhydrogenase; sucrose; fructose; glucose; glutamate production; corynebacterium glutamicum; lysine production; escherichia coli; malic enzyme; l-glutamate; amino-acids; fructose; cloning; glucose; fructose-1; 6-bisphosphatase; bacteria
Applied Microbiology and Biotechnology
Page URI


Kabus A, Georgi T, Wendisch VF, Bott M. Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation. Applied Microbiology and Biotechnology. 2007;75(1):47-53.
Kabus, A., Georgi, T., Wendisch, V. F., & Bott, M. (2007). Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation. Applied Microbiology and Biotechnology, 75(1), 47-53.
Kabus, A., Georgi, T., Wendisch, V. F., and Bott, M. (2007). Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation. Applied Microbiology and Biotechnology 75, 47-53.
Kabus, A., et al., 2007. Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation. Applied Microbiology and Biotechnology, 75(1), p 47-53.
A. Kabus, et al., “Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation”, Applied Microbiology and Biotechnology, vol. 75, 2007, pp. 47-53.
Kabus, A., Georgi, T., Wendisch, V.F., Bott, M.: Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation. Applied Microbiology and Biotechnology. 75, 47-53 (2007).
Kabus, A., Georgi, T., Wendisch, Volker F., and Bott, M. “Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation”. Applied Microbiology and Biotechnology 75.1 (2007): 47-53.

59 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions.
Liu J, Li H, Zhao G, Caiyin Q, Qiao J., J Ind Microbiol Biotechnol 45(5), 2018
PMID: 29582241
Enhanced isobutanol production from acetate by combinatorial overexpression of acetyl-CoA synthetase and anaplerotic enzymes in engineered Escherichia coli.
Song HS, Seo HM, Jeon JM, Moon YM, Hong JW, Hong YG, Bhatia SK, Ahn J, Lee H, Kim W, Park YC, Choi KY, Kim YG, Yang YH., Biotechnol Bioeng 115(8), 2018
PMID: 29663332
Physiological Response of Corynebacterium glutamicum to Increasingly Nutrient-Rich Growth Conditions.
Graf M, Zieringer J, Haas T, Nieß A, Blombach B, Takors R., Front Microbiol 9(), 2018
PMID: 30210489
NADPH-related processes studied with a SoxR-based biosensor in Escherichia coli.
Spielmann A, Baumgart M, Bott M., Microbiologyopen (), 2018
PMID: 30585443
Malonyl-CoA pathway: a promising route for 3-hydroxypropionate biosynthesis.
Liu C, Ding Y, Xian M, Liu M, Liu H, Ma Q, Zhao G., Crit Rev Biotechnol 37(7), 2017
PMID: 28078904
Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate L-pipecolic acid in Escherichia coli.
Ying H, Tao S, Wang J, Ma W, Chen K, Wang X, Ouyang P., Microb Cell Fact 16(1), 2017
PMID: 28347340
A new genome-scale metabolic model of Corynebacterium glutamicum and its application.
Zhang Y, Cai J, Shang X, Wang B, Liu S, Chai X, Tan T, Zhang Y, Wen T., Biotechnol Biofuels 10(), 2017
PMID: 28680478
Holistic bioengineering: rewiring central metabolism for enhanced bioproduction.
Aslan S, Noor E, Bar-Even A., Biochem J 474(23), 2017
PMID: 29146872
Increasing available NADH supply during succinic acid production by Corynebacterium glutamicum.
Zhou Z, Wang C, Chen Y, Zhang K, Xu H, Cai H, Chen Z., Biotechnol Prog 31(1), 2015
PMID: 25311136
A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum.
Eggeling L, Bott M., Appl Microbiol Biotechnol 99(8), 2015
PMID: 25761623
NADPH-generating systems in bacteria and archaea.
Spaans SK, Weusthuis RA, van der Oost J, Kengen SW., Front Microbiol 6(), 2015
PMID: 26284036
Anaerobic growth of Corynebacterium glutamicum via mixed-acid fermentation.
Michel A, Koch-Koerfges A, Krumbach K, Brocker M, Bott M., Appl Environ Microbiol 81(21), 2015
PMID: 26276118
Development of Halomonas TD01 as a host for open production of chemicals.
Fu XZ, Tan D, Aibaidula G, Wu Q, Chen JC, Chen GQ., Metab Eng 23(), 2014
PMID: 24566041
Carbon flux analysis by 13C nuclear magnetic resonance to determine the effect of CO2 on anaerobic succinate production by Corynebacterium glutamicum.
Radoš D, Turner DL, Fonseca LL, Carvalho AL, Blombach B, Eikmanns BJ, Neves AR, Santos H., Appl Environ Microbiol 80(10), 2014
PMID: 24610842
Application of metabolic engineering for the biotechnological production of L-valine.
Oldiges M, Eikmanns BJ, Blombach B., Appl Microbiol Biotechnol 98(13), 2014
PMID: 24816722
Construction of a novel expression system for use in Corynebacterium glutamicum.
Hu J, Li Y, Zhang H, Tan Y, Wang X., Plasmid 75(), 2014
PMID: 25108235
Effects of NADH kinase on NADPH-dependent biotransformation processes in Escherichia coli.
Lee WH, Kim JW, Park EH, Han NS, Kim MD, Seo JH., Appl Microbiol Biotechnol 97(4), 2013
PMID: 23053084
Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation.
Lee WH, Kim MD, Jin YS, Seo JH., Appl Microbiol Biotechnol 97(7), 2013
PMID: 23420268
Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine.
Jiang LY, Chen SG, Zhang YY, Liu JZ., BMC Biotechnol 13(), 2013
PMID: 23725060
Metabolic engineering and transhydrogenase effects on NADPH availability in Escherichia coli.
Jan J, Martinez I, Wang Y, Bennett GN, San KY., Biotechnol Prog 29(5), 2013
PMID: 23794523
Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation conditions.
Hasegawa S, Uematsu K, Natsuma Y, Suda M, Hiraga K, Jojima T, Inui M, Yukawa H., Appl Environ Microbiol 78(3), 2012
PMID: 22138982
Optimization of enzyme parameters for fermentative production of biorenewable fuels and chemicals.
Jarboe LR, Liu P, Kautharapu KB, Ingram LO., Comput Struct Biotechnol J 3(), 2012
PMID: 24688665
Cytosolic NADPH balancing in Penicillium chrysogenum cultivated on mixtures of glucose and ethanol.
Zhao Z, Kuijvenhoven K, van Gulik WM, Heijnen JJ, van Winden WA, Verheijen PJ., Appl Microbiol Biotechnol 89(1), 2011
PMID: 20809073
Corynebacterium glutamicum tailored for efficient isobutanol production.
Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ., Appl Environ Microbiol 77(10), 2011
PMID: 21441331
Evidence for reductive genome evolution and lateral acquisition of virulence functions in two Corynebacterium pseudotuberculosis strains.
Ruiz JC, D'Afonseca V, Silva A, Ali A, Pinto AC, Santos AR, Rocha AA, Lopes DO, Dorella FA, Pacheco LG, Costa MP, Turk MZ, Seyffert N, Moraes PM, Soares SC, Almeida SS, Castro TL, Abreu VA, Trost E, Baumbach J, Tauch A, Schneider MP, McCulloch J, Cerdeira LT, Ramos RT, Zerlotini A, Dominitini A, Resende DM, Coser EM, Oliveira LM, Pedrosa AL, Vieira CU, Guimarães CT, Bartholomeu DC, Oliveira DM, Santos FR, Rabelo ÉM, Lobo FP, Franco GR, Costa AF, Castro IM, Dias SR, Ferro JA, Ortega JM, Paiva LV, Goulart LR, Almeida JF, Ferro MI, Carneiro NP, Falcão PR, Grynberg P, Teixeira SM, Brommonschenkel S, Oliveira SC, Meyer R, Moore RJ, Miyoshi A, Oliveira GC, Azevedo V., PLoS One 6(4), 2011
PMID: 21533164
Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli.
Lee WH, Chin YW, Han NS, Kim MD, Seo JH., Appl Microbiol Biotechnol 91(4), 2011
PMID: 21538115
Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum.
Bartek T, Blombach B, Lang S, Eikmanns BJ, Wiechert W, Oldiges M, Nöh K, Noack S., Appl Environ Microbiol 77(18), 2011
PMID: 21784914
Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production.
Lindner SN, Niederholtmeyer H, Schmitz K, Schoberth SM, Wendisch VF., Appl Microbiol Biotechnol 87(2), 2010
PMID: 20180116
Importance of NADPH supply for improved L-valine formation in Corynebacterium glutamicum.
Bartek T, Blombach B, Zönnchen E, Makus P, Lang S, Eikmanns BJ, Oldiges M., Biotechnol Prog 26(2), 2010
PMID: 20014412
Engineering Corynebacterium glutamicum for isobutanol production.
Smith KM, Cho KM, Liao JC., Appl Microbiol Biotechnol 87(3), 2010
PMID: 20376637
Redox biocatalysis and metabolism: molecular mechanisms and metabolic network analysis.
Blank LM, Ebert BE, Buehler K, Bühler B., Antioxid Redox Signal 13(3), 2010
PMID: 20059399
Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production.
Takeno S, Murata R, Kobayashi R, Mitsuhashi S, Ikeda M., Appl Environ Microbiol 76(21), 2010
PMID: 20851994
Acetohydroxyacid synthase, a novel target for improvement of L-lysine production by Corynebacterium glutamicum.
Blombach B, Hans S, Bathe B, Eikmanns BJ., Appl Environ Microbiol 75(2), 2009
PMID: 19047397
Corynebacterium glutamicum tailored for high-yield L-valine production.
Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ., Appl Microbiol Biotechnol 79(3), 2008
PMID: 18379776
NCgl2620 encodes a class II polyphosphate kinase in Corynebacterium glutamicum.
Lindner SN, Vidaurre D, Willbold S, Schoberth SM, Wendisch VF., Appl Environ Microbiol 73(15), 2007
PMID: 17545325

42 References

Daten bereitgestellt von Europe PubMed Central.

S, J Gen Appl Microbiol 13(), 1967
Expression of the Escherichia coli pntA and pntB genes, encoding nicotinamide nucleotide transhydrogenase, in Saccharomyces cerevisiae and its effect on product formation during anaerobic glucose fermentation.
Anderlund M, Nissen TL, Nielsen J, Villadsen J, Rydstrom J, Hahn-Hagerdal B, Kielland-Brandt MC., Appl. Environ. Microbiol. 65(6), 1999
PMID: 10347010

F, 1992
The respiratory chain of Corynebacterium glutamicum.
Bott M, Niebisch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948635

M, 2005
Cloning and expression of the transhydrogenase gene of Escherichia coli.
Clarke DM, Bragg PD., J. Bacteriol. 162(1), 1985
PMID: 3884596
Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose.
Dominguez H, Rollin C, Guyonvarch A, Guerquin-Kern JL, Cocaign-Bousquet M, Lindley ND., Eur. J. Biochem. 254(1), 1998
PMID: 9652400

L, Appl Microbiol Biotechnol 52(), 1999
Cloning of the malic enzyme gene from Corynebacterium glutamicum and role of the enzyme in lactate metabolism.
Gourdon P, Baucher MF, Lindley ND, Guyonvarch A., Appl. Environ. Microbiol. 66(7), 2000
PMID: 10877795

D, 1985
Industrial production of amino acids by coryneform bacteria.
Hermann T., J. Biotechnol. 104(1-3), 2003
PMID: 12948636
Proton translocation by transhydrogenase.
Jackson JB., FEBS Lett. 545(1), 2003
PMID: 12788487

R, 2005

C, J Bacteriol 17(), 1993
Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose.
Kiefer P, Heinzle E, Zelder O, Wittmann C., Appl. Environ. Microbiol. 70(1), 2004
PMID: 14711646

E, 2005
The ptsI gene encoding enzyme I of the phosphotransferase system of Corynebacterium glutamicum.
Kotrba P, Inui M, Yukawa H., Biochem. Biophys. Res. Commun. 289(5), 2001
PMID: 11741338

W, 2005

P, Anal Chem 51(), 1979
Response of the central metabolism of Corynebacterium glutamicum to different flux burdens.
Marx A, Striegel K, de Graaf AA, Sahm H, Eggeling L., Biotechnol. Bioeng. 56(2), 1997
PMID: 18636622
Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase.
Marx A, Eikmanns BJ, Sahm H, de Graaf AA, Eggeling L., Metab. Eng. 1(1), 1999
PMID: 10935753
Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum.
Marx A, Hans S, Mockel B, Bathe B, de Graaf AA, McCormack AC, Stapleton C, Burke K, O'Donohue M, Dunican LK., J. Biotechnol. 104(1-3), 2003
PMID: 12948638
Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032.
Moon MW, Kim HJ, Oh TK, Shin CS, Lee JS, Kim SJ, Lee JK., FEMS Microbiol. Lett. 244(2), 2005
PMID: 15766777
A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant.
Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M., Appl. Microbiol. Biotechnol. 58(2), 2002
PMID: 11876415
Corynebacterium glutamicum: a dissection of the PTS.
Parche S, Burkovski A, Sprenger GA, Weil B, Kramer R, Titgemeyer F., J. Mol. Microbiol. Biotechnol. 3(3), 2001
PMID: 11361073
Biotechnological manufacture of lysine.
Pfefferle W, Mockel B, Bathe B, Marx A., Adv. Biochem. Eng. Biotechnol. 79(), 2003
PMID: 12523389

A, Biotechnol Bioeng 51(), 1996
Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits L-glutamate efflux of Corynebacterium glutamicum.
Radmacher E, Stansen KC, Besra GS, Alderwick LJ, Maughan WN, Hollweg G, Sahm H, Wendisch VF, Eggeling L., Microbiology (Reading, Engl.) 151(Pt 5), 2005
PMID: 15870446
Pathway analysis and metabolic engineering in Corynebacterium glutamicum.
Sahm H, Eggeling L, de Graaf AA., Biol. Chem. 381(9-10), 2000
PMID: 11076021
Measurement of protein using bicinchoninic acid.
Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC., Anal. Biochem. 150(1), 1985
PMID: 3843705

JD, Biochem J 341(), 1999


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 17216441
PubMed | Europe PMC

Suchen in

Google Scholar