The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses

Ishige T, Krause M, Bott M, Wendisch VF, Sahm H (2003)
Journal of Bacteriology 185(15): 4519-4529.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Abstract / Bemerkung
The phosphate (P-i) starvation stimulon of Corynebacterium glutamicum was characterized by global gene expression analysis by using DNA microarrays. Hierarchical cluster analysis of the genes showing altered expression 10 to 180 min after a shift from P-i-sufficient to P-i-limiting conditions led to identification of five groups comprising 92 genes. Four of these groups included genes which are not directly involved in P metabolism and changed expression presumably due to the reduced growth rate observed after the shift or to the exchange of medium. One group, however, comprised 25 genes, most of which are obviously related to phosphorus (P) uptake and metabolism and exhibited 4- to >30-fold-greater expression after the shift to P-i limitation. Among these genes, the RNA levels of the pstSCAB (ABC-type P-i uptake system), glpQ (glycero-phosphoryldiester phosphodiesterase), ugpAEBC (ABC-type sn-glycerol 3-phosphate uptake system), phoH (unknown function), nucH (extracellular nuclease), and Cg10328 (5'-nucleotidase or related esterase) genes were increased, and pstSCAB exhibited a faster response than the other genes. Transcriptional fusion analyses revealed that elevated expression of pstSCAB and ugpAEBC was primarily due to transcriptional regulation. Several genes also involved in P uptake and metabolism were not affected by P-i starvation; these included the genes encoding a PitA-like P-i uptake system and a putative Na+-dependent P-i transporter and the genes involved in the metabolism of pyrophosphate and polyphosphate. In summary, a global, time-resolved picture of the response of C. glutamicum to P-i starvation was obtained.
Erscheinungsjahr
Zeitschriftentitel
Journal of Bacteriology
Band
185
Ausgabe
15
Seite(n)
4519-4529
ISSN
PUB-ID

Zitieren

Ishige T, Krause M, Bott M, Wendisch VF, Sahm H. The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. Journal of Bacteriology. 2003;185(15):4519-4529.
Ishige, T., Krause, M., Bott, M., Wendisch, V. F., & Sahm, H. (2003). The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. Journal of Bacteriology, 185(15), 4519-4529. doi:10.1128/Jb.185.15.4519-4529.2003
Ishige, T., Krause, M., Bott, M., Wendisch, V. F., and Sahm, H. (2003). The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. Journal of Bacteriology 185, 4519-4529.
Ishige, T., et al., 2003. The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. Journal of Bacteriology, 185(15), p 4519-4529.
T. Ishige, et al., “The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses”, Journal of Bacteriology, vol. 185, 2003, pp. 4519-4529.
Ishige, T., Krause, M., Bott, M., Wendisch, V.F., Sahm, H.: The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. Journal of Bacteriology. 185, 4519-4529 (2003).
Ishige, T., Krause, M., Bott, M., Wendisch, Volker F., and Sahm, H. “The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses”. Journal of Bacteriology 185.15 (2003): 4519-4529.

82 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Identifying the Growth Modulon of Corynebacterium glutamicum.
Haas T, Graf M, Nieß A, Busche T, Kalinowski J, Blombach B, Takors R., Front Microbiol 10(), 2019
PMID: 31134020
Phosphate Limitation Triggers the Dissolution of Precipitated Iron by the Marine Bacterium Pseudovibrio sp. FO-BEG1.
Romano S, Bondarev V, Kölling M, Dittmar T, Schulz-Vogt HN., Front Microbiol 8(), 2017
PMID: 28352252
Exploring bacterial interspecific interactions for discovery of novel antimicrobial compounds.
Tyc O, de Jager VCL, van den Berg M, Gerards S, Janssens TKS, Zaagman N, Kai M, Svatos A, Zweers H, Hordijk C, Besselink H, de Boer W, Garbeva P., Microb Biotechnol 10(4), 2017
PMID: 28557379
Comparative Omics and Trait Analyses of Marine Pseudoalteromonas Phages Advance the Phage OTU Concept.
Duhaime MB, Solonenko N, Roux S, Verberkmoes NC, Wichels A, Sullivan MB., Front Microbiol 8(), 2017
PMID: 28729861
Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.
Pérez-García F, Peters-Wendisch P, Wendisch VF., Appl Microbiol Biotechnol 100(18), 2016
PMID: 27345060
The physiology of growth arrest: uniting molecular and environmental microbiology.
Bergkessel M, Basta DW, Newman DK., Nat Rev Microbiol 14(9), 2016
PMID: 27510862
Complete genome sequencing and comparative analyses of broad-spectrum antimicrobial-producing Micromonospora sp. HK10.
Talukdar M, Das D, Bora C, Bora TC, Deka Boruah HP, Singh AK., Gene 594(1), 2016
PMID: 27609432
Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum.
Lubitz D, Wendisch VF., BMC Microbiol 16(1), 2016
PMID: 27717325
Adaptation of Propionibacterium freudenreichii to long-term survival under gradual nutritional shortage.
Aburjaile FF, Rohmer M, Parrinello H, Maillard MB, Beaucher E, Henry G, Nicolas A, Madec MN, Thierry A, Parayre S, Deutsch SM, Cocaign-Bousquet M, Miyoshi A, Azevedo V, Le Loir Y, Falentin H., BMC Genomics 17(1), 2016
PMID: 27931189
Regulation of the pstSCAB operon in Corynebacterium glutamicum by the regulator of acetate metabolism RamB.
Sorger-Herrmann U, Taniguchi H, Wendisch VF., BMC Microbiol 15(), 2015
PMID: 26021728
Phosphate limited fed-batch processes: impact on carbon usage and energy metabolism in Escherichia coli.
Schuhmacher T, Löffler M, Hurler T, Takors R., J Biotechnol 190(), 2014
PMID: 24833421
Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum.
Frohwitter J, Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF., J Biotechnol 191(), 2014
PMID: 24910970
A proteomic view of cell physiology of the industrial workhorse Bacillus licheniformis.
Voigt B, Schroeter R, Schweder T, Jürgen B, Albrecht D, van Dijl JM, Maurer KH, Hecker M., J Biotechnol 191(), 2014
PMID: 25011098
The quantitative proteomic response of Synechocystis sp. PCC6803 to phosphate acclimation.
Fuszard MA, Ow SY, Gan CS, Noirel J, Ternan NG, McMullan G, Biggs CA, Reardon KF, Wright PC., Aquat Biosyst 9(1), 2013
PMID: 23442353
Physiology and transcriptome of the polycyclic aromatic hydrocarbon-degrading Sphingomonas sp. LH128 after long-term starvation.
Fida TT, Moreno-Forero SK, Heipieper HJ, Springael D., Microbiology 159(pt 9), 2013
PMID: 23861307
Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for L-methionine and branched-chain amino acids.
Lange C, Mustafi N, Frunzke J, Kennerknecht N, Wessel M, Bott M, Wendisch VF., J Biotechnol 158(4), 2012
PMID: 21683740
Biotin protein ligase from Corynebacterium glutamicum: role for growth and L: -lysine production.
Peters-Wendisch P, Stansen KC, Götker S, Wendisch VF., Appl Microbiol Biotechnol 93(6), 2012
PMID: 22159614
Characterization of the biotin uptake system encoded by the biotin-inducible bioYMN operon of Corynebacterium glutamicum.
Schneider J, Peters-Wendisch P, Stansen KC, Götker S, Maximow S, Krämer R, Wendisch VF., BMC Microbiol 12(), 2012
PMID: 22243621
A conserved two-component signal transduction system controls the response to phosphate starvation in Bifidobacterium breve UCC2003.
Alvarez-Martin P, Fernández M, O'Connell-Motherway M, O'Connell KJ, Sauvageot N, Fitzgerald GF, MacSharry J, Zomer A, van Sinderen D., Appl Environ Microbiol 78(15), 2012
PMID: 22635988
Genome-wide analysis of the Pho regulon in a pstCA mutant of Citrobacter rodentium.
Cheng C, Wakefield MJ, Yang J, Tauschek M, Robins-Browne RM., PLoS One 7(11), 2012
PMID: 23226353
Tools for genetic manipulations in Corynebacterium glutamicum and their applications.
Nešvera J, Pátek M., Appl Microbiol Biotechnol 90(5), 2011
PMID: 21519933
Dual transcriptional profiling of a bacterial/fungal confrontation: Collimonas fungivorans versus Aspergillus niger.
Mela F, Fritsche K, de Boer W, van Veen JA, de Graaff LH, van den Berg M, Leveau JH., ISME J 5(9), 2011
PMID: 21614084
Roles of two Shewanella oneidensis MR-1 extracellular endonucleases.
Gödeke J, Heun M, Bubendorfer S, Paul K, Thormann KM., Appl Environ Microbiol 77(15), 2011
PMID: 21705528
Development of phoH as a novel signature gene for assessing marine phage diversity.
Goldsmith DB, Crosti G, Dwivedi B, McDaniel LD, Varsani A, Suttle CA, Weinbauer MG, Sandaa RA, Breitbart M., Appl Environ Microbiol 77(21), 2011
PMID: 21926220
Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production.
Lindner SN, Niederholtmeyer H, Schmitz K, Schoberth SM, Wendisch VF., Appl Microbiol Biotechnol 87(2), 2010
PMID: 20180116
Link between phosphate starvation and glycogen metabolism in Corynebacterium glutamicum, revealed by metabolomics.
Woo HM, Noack S, Seibold GM, Willbold S, Eikmanns BJ, Bott M., Appl Environ Microbiol 76(20), 2010
PMID: 20802079
An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis.
Covington ED, Gelbmann CB, Kotloski NJ, Gralnick JA., Mol Microbiol 78(2), 2010
PMID: 20807196
Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments.
Sullivan MB, Huang KH, Ignacio-Espinoza JC, Berlin AM, Kelly L, Weigele PR, DeFrancesco AS, Kern SE, Thompson LR, Young S, Yandava C, Fu R, Krastins B, Chase M, Sarracino D, Osburne MS, Henn MR, Chisholm SW., Environ Microbiol 12(11), 2010
PMID: 20662890
Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate.
Kato O, Youn JW, Stansen KC, Matsui D, Oikawa T, Wendisch VF., BMC Microbiol 10(), 2010
PMID: 21159175
Pathway identification combining metabolic flux and functional genomics analyses: acetate and propionate activation by Corynebacterium glutamicum.
Veit A, Rittmann D, Georgi T, Youn JW, Eikmanns BJ, Wendisch VF., J Biotechnol 140(1-2), 2009
PMID: 19162097
Exopolyphosphatases PPX1 and PPX2 from Corynebacterium glutamicum.
Lindner SN, Knebel S, Wesseling H, Schoberth SM, Wendisch VF., Appl Environ Microbiol 75(10), 2009
PMID: 19304823
Regulation of ldh expression during biotin-limited growth of Corynebacterium glutamicum.
Dietrich C, Nato A, Bost B, Le Maréchal P, Guyonvarch A., Microbiology 155(pt 4), 2009
PMID: 19332837
Microarray analysis of phosphate regulation in the marine cyanobacterium Synechococcus sp. WH8102.
Tetu SG, Brahamsha B, Johnson DA, Tai V, Phillippy K, Palenik B, Paulsen IT., ISME J 3(7), 2009
PMID: 19340084
Phosphate-dependent behavior of the archaeon Halobacterium salinarum strain R1.
Wende A, Furtwängler K, Oesterhelt D., J Bacteriol 191(12), 2009
PMID: 19363117
Utilization of DNA as a sole source of phosphorus, carbon, and energy by Shewanella spp.: ecological and physiological implications for dissimilatory metal reduction.
Pinchuk GE, Ammons C, Culley DE, Li SM, McLean JS, Romine MF, Nealson KH, Fredrickson JK, Beliaev AS., Appl Environ Microbiol 74(4), 2008
PMID: 18156329
The high-affinity phosphate transporter Pst is a virulence factor for Proteus mirabilis during complicated urinary tract infection.
Jacobsen SM, Lane MC, Harro JM, Shirtliff ME, Mobley HL., FEMS Immunol Med Microbiol 52(2), 2008
PMID: 18194341
Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum.
Rittmann D, Lindner SN, Wendisch VF., Appl Environ Microbiol 74(20), 2008
PMID: 18757581
Gene expression analysis of Corynebacterium glutamicum subjected to long-term lactic acid adaptation.
Jakob K, Satorhelyi P, Lange C, Wendisch VF, Silakowski B, Scherer S, Neuhaus K., J Bacteriol 189(15), 2007
PMID: 17526706
NCgl2620 encodes a class II polyphosphate kinase in Corynebacterium glutamicum.
Lindner SN, Vidaurre D, Willbold S, Schoberth SM, Wendisch VF., Appl Environ Microbiol 73(15), 2007
PMID: 17545325
High cell density cultivation of recombinant yeasts and bacteria under non-pressurized and pressurized conditions in stirred tank bioreactors.
Knoll A, Bartsch S, Husemann B, Engel P, Schroer K, Ribeiro B, Stöckmann C, Seletzky J, Büchs J., J Biotechnol 132(2), 2007
PMID: 17681630
Salmonid microarrays identify intestinal genes that reliably monitor P deficiency in rainbow trout aquaculture.
Kirchner S, McDaniel NK, Sugiura SH, Soteropoulos P, Tian B, Fletcher JW, Ferraris RP., Anim Genet 38(4), 2007
PMID: 17596124
Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a DeltaphoP mutant.
Rodríguez-García A, Barreiro C, Santos-Beneit F, Sola-Landa A, Martín JF., Proteomics 7(14), 2007
PMID: 17623301
Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis.
Knoppová M, Phensaijai M, Veselý M, Zemanová M, Nesvera J, Pátek M., Curr Microbiol 55(3), 2007
PMID: 17657537
The extracellular proteome of Bacillus licheniformis grown in different media and under different nutrient starvation conditions.
Voigt B, Schweder T, Sibbald MJ, Albrecht D, Ehrenreich A, Bernhardt J, Feesche J, Maurer KH, Gottschalk G, van Dijl JM, Hecker M., Proteomics 6(1), 2006
PMID: 16317772
Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response.
Kocan M, Schaffer S, Ishige T, Sorger-Herrmann U, Wendisch VF, Bott M., J Bacteriol 188(2), 2006
PMID: 16385062
Emerging Corynebacterium glutamicum systems biology.
Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W., J Biotechnol 124(1), 2006
PMID: 16406159
The DtxR regulon of Corynebacterium glutamicum.
Wennerhold J, Bott M., J Bacteriol 188(8), 2006
PMID: 16585752
Metabolic activity of Corynebacterium glutamicum grown on L: -lactic acid under stress.
Seletzky JM, Noack U, Fricke J, Hahn S, Büchs J., Appl Microbiol Biotechnol 72(6), 2006
PMID: 16642330
The phosphate-starvation response of Bacillus licheniformis.
Hoi le T, Voigt B, Jürgen B, Ehrenreich A, Gottschalk G, Evers S, Feesche J, Maurer KH, Hecker M, Schweder T., Proteomics 6(12), 2006
PMID: 16705752
Determination of soluble and granular inorganic polyphosphate in Corynebacterium glutamicum.
Klauth P, Pallerla SR, Vidaurre D, Ralfs C, Wendisch VF, Schoberth SM., Appl Microbiol Biotechnol 72(5), 2006
PMID: 16977467
Formation of volutin granules in Corynebacterium glutamicum.
Pallerla SR, Knebel S, Polen T, Klauth P, Hollender J, Wendisch VF, Schoberth SM., FEMS Microbiol Lett 243(1), 2005
PMID: 15668011
Mapping the membrane proteome of Corynebacterium glutamicum.
Schluesener D, Fischer F, Kruip J, Rögner M, Poetsch A., Proteomics 5(5), 2005
PMID: 15717325
Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages.
Rengarajan J, Bloom BR, Rubin EJ., Proc Natl Acad Sci U S A 102(23), 2005
PMID: 15928073
DNA microarray analysis of the nitrogen starvation response of Corynebacterium glutamicum.
Silberbach M, Hüser A, Kalinowski J, Pühler A, Walter B, Krämer R, Burkovski A., J Biotechnol 119(4), 2005
PMID: 15935503
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl Environ Microbiol 71(10), 2005
PMID: 16204505
Stress-directed adaptive mutations and evolution.
Wright BE., Mol Microbiol 52(3), 2004
PMID: 15101972
Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis.
Netzer R, Krause M, Rittmann D, Peters-Wendisch PG, Eggeling L, Wendisch VF, Sahm H., Arch Microbiol 182(5), 2004
PMID: 15375646
Cometabolism of a nongrowth substrate: L-serine utilization by Corynebacterium glutamicum.
Netzer R, Peters-Wendisch P, Eggeling L, Sahm H., Appl Environ Microbiol 70(12), 2004
PMID: 15574911

50 References

Daten bereitgestellt von Europe PubMed Central.

Transcriptional analysis of the pst operon of Escherichia coli.
Aguena M, Yagil E, Spira B., Mol. Genet. Genomics 268(4), 2002
PMID: 12471449
An exopolyphosphatase of Escherichia coli. The enzyme and its ppx gene in a polyphosphate operon.
Akiyama M, Crooke E, Kornberg A., J. Biol. Chem. 268(1), 1993
PMID: 8380170
Evidence that protein antigen b of Mycobacterium tuberculosis is involved in phosphate metabolism.
Andersen AB, Ljungqvist L, Olsen M., J. Gen. Microbiol. 136(3), 1990
PMID: 2118164
Global gene expression profiling in Escherichia coli K12. The effects of integration host factor.
Arfin SM, Long AD, Ito ET, Tolleri L, Riehle MM, Paegle ES, Hatfield GW., J. Biol. Chem. 275(38), 2000
PMID: 10871608
Crystallographic and biochemical analyses of the metal-free Haemophilus influenzae Fe3+-binding protein.
Bruns CM, Anderson DS, Vaughan KG, Williams PA, Nowalk AJ, McRee DE, Mietzner TA., Biochemistry 40(51), 2001
PMID: 11747438
The immunodominant 38-kDa lipoprotein antigen of Mycobacterium tuberculosis is a phosphate-binding protein.
Chang Z, Choudhary A, Lathigra R, Quiocho FA., J. Biol. Chem. 269(3), 1994
PMID: 8294447
Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence.
Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG., Nature 393(6685), 1998
PMID: 9634230
Cluster analysis and display of genome-wide expression patterns.
Eisen MB, Spellman PT, Brown PO, Botstein D., Proc. Natl. Acad. Sci. U.S.A. 95(25), 1998
PMID: 9843981
Regulation of polyphosphate kinase gene expression in Acinetobacter baumannii 252.
Gavigan JA, Marshall LM, Dobson AD., Microbiology (Reading, Engl.) 145 ( Pt 10)(), 1999
PMID: 10537215
Determination of serum proteins by means of the biuret reaction.
GORNALL AG, BARDAWILL CJ, DAVID MM., J. Biol. Chem. 177(2), 1949
PMID: 18110453
rRNA transcription and growth rate-dependent regulation of ribosome synthesis in Escherichia coli.
Gourse RL, Gaal T, Bartlett MS, Appleman JA, Ross W., Annu. Rev. Microbiol. 50(), 1996
PMID: 8905094
Activation by gene amplification of pitB, encoding a third phosphate transporter of Escherichia coli K-12.
Hoffer SM, Schoondermark P, van Veen HW, Tommassen J., J. Bacteriol. 183(15), 2001
PMID: 11443103
Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS.
Hommais F, Krin E, Laurent-Winter C, Soutourina O, Malpertuy A, Le Caer JP, Danchin A, Bertin P., Mol. Microbiol. 40(1), 2001
PMID: 11298273
Cloning, expression, and characterization of polyphosphate glucokinase from Mycobacterium tuberculosis.
Hsieh PC, Shenoy BC, Samols D, Phillips NF., J. Biol. Chem. 271(9), 1996
PMID: 8617763

AUTHOR UNKNOWN, 2002

AUTHOR UNKNOWN, 2003

AUTHOR UNKNOWN, 2000

AUTHOR UNKNOWN, 2002
Three different putative phosphate transport receptors are encoded by the Mycobacterium tuberculosis genome and are present at the surface of Mycobacterium bovis BCG.
Lefevre P, Braibant M, de Wit L, Kalai M, Roeper D, Grotzinger J, Delville JP, Peirs P, Ooms J, Huygen K, Content J., J. Bacteriol. 179(9), 1997
PMID: 9139906
LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli.
Lehnen D, Blumer C, Polen T, Wackwitz B, Wendisch VF, Unden G., Mol. Microbiol. 45(2), 2002
PMID: 12123461

AUTHOR UNKNOWN, 1989
DNA microarray analyses of the long-term adaptive response of Escherichia coli to acetate and propionate.
Polen T, Rittmann D, Wendisch VF, Sahm H., Appl. Environ. Microbiol. 69(3), 2003
PMID: 12620868
Regulatory interactions between the Pho and sigma(B)-dependent general stress regulons of Bacillus subtilis.
Pragai Z, Harwood CR., Microbiology (Reading, Engl.) 148(Pt 5), 2002
PMID: 11988534
Genome-wide analysis of the general stress response in Bacillus subtilis.
Price CW, Fawcett P, Ceremonie H, Su N, Murphy CK, Youngman P., Mol. Microbiol. 41(4), 2001
PMID: 11532142
Pathway analysis and metabolic engineering in Corynebacterium glutamicum.
Sahm H, Eggeling L, de Graaf AA., Biol. Chem. 381(9-10), 2000
PMID: 11076021

AUTHOR UNKNOWN, 1989
Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli.
VanBogelen RA, Olson ER, Wanner BL, Neidhardt FC., J. Bacteriol. 178(15), 1996
PMID: 8755861
Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli.
van Veen HW, Abee T, Kortstee GJ, Konings WN, Zehnder AJ., Biochemistry 33(7), 1994
PMID: 8110778

AUTHOR UNKNOWN, 1998

AUTHOR UNKNOWN, 1996
Isolation of Escherichia coli mRNA and comparison of expression using mRNA and total RNA on DNA microarrays.
Wendisch VF, Zimmer DP, Khodursky A, Peter B, Cozzarelli N, Kustu S., Anal. Biochem. 290(2), 2001
PMID: 11237321
A polyphosphate kinase (PPK2) widely conserved in bacteria.
Zhang H, Ishige K, Kornberg A., Proc. Natl. Acad. Sci. U.S.A. 99(26), 2002
PMID: 12486232
Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation.
Zimmer DP, Soupene E, Lee HL, Wendisch VF, Khodursky AB, Peter BJ, Bender RA, Kustu S., Proc. Natl. Acad. Sci. U.S.A. 97(26), 2000
PMID: 11121068

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 12867461
PubMed | Europe PMC

Suchen in

Google Scholar