Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum

Georgi T, Engels V, Wendisch VF (2008)
Journal of Bacteriology 190(3): 963-971.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Georgi, T.; Engels, V.; Wendisch, Volker F.UniBi
Abstract / Bemerkung
Corynebacterium glutamicum can grow on L-lactate as a sole carbon and energy source. The NCg12816-lldD operon encoding a putative transporter (NCg12816) and a quinone-dependent L-lactate dehydrogenase (LldD) is required for L-lactate utilization. DNA affinity chromatography revealed that the FadR-type regulator LldR (encoded by NCg12814) binds to the upstream region of NCg12816-lldD. Overexpression of lldR resulted in strongly reduced NCg12816-lldD mRNA levels and strongly reduced LldD activity, and as a consequence, a severe growth defect was observed in cells grown on L-lactate as the sole carbon and energy source, but not in cells grown on glucose, ribose, or acetate. Deletion of lldR had no effect on growth on these carbon sources but resulted in high NCg12816-lldD mRNA levels and high LldD activity in the presence and absence Of L-lactate. Purified His-tagged LldR bound to a 54-bp fragment of the NCg12816-lldD promoter, which overlaps with the transcriptional start site determined by random amplification of cDNA ends-PCR and contains a putative operator motif typical of FadR-type regulators, which is (-1)TNGTNNNACNA(10). Mutational analysis revealed that this motif with hyphenated dyad symmetry is essential for binding of LldD to the NCg12816-lldD promoter. L-Lactate, but not D-lactate, interfered with binding of LldR Hi, to the NCg12816-lldD promoter. Thus, during growth on media lacking L-lactate, LldR represses expression of NCg12816-lldD. In the presence Of L-lactate in the growth medium or under conditions leading to intracellular L-lactate accumulation, the L-lactate utilization operon is induced.
Stichworte
molecular analysis; carbon-sources; transcriptional regulator; acetate metabolism; acid-producing bacteria; expression analysis; respiratory-chain; escherichia-coli; lysine production; flux distribution
Erscheinungsjahr
2008
Zeitschriftentitel
Journal of Bacteriology
Band
190
Ausgabe
3
Seite(n)
963-971
ISSN
0021-9193
Page URI
https://pub.uni-bielefeld.de/record/1894988

Zitieren

Georgi T, Engels V, Wendisch VF. Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum. Journal of Bacteriology. 2008;190(3):963-971.
Georgi, T., Engels, V., & Wendisch, V. F. (2008). Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum. Journal of Bacteriology, 190(3), 963-971. https://doi.org/10.1128/Jb.01147-07
Georgi, T., Engels, V., and Wendisch, Volker F. 2008. “Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum”. Journal of Bacteriology 190 (3): 963-971.
Georgi, T., Engels, V., and Wendisch, V. F. (2008). Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum. Journal of Bacteriology 190, 963-971.
Georgi, T., Engels, V., & Wendisch, V.F., 2008. Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum. Journal of Bacteriology, 190(3), p 963-971.
T. Georgi, V. Engels, and V.F. Wendisch, “Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum”, Journal of Bacteriology, vol. 190, 2008, pp. 963-971.
Georgi, T., Engels, V., Wendisch, V.F.: Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum. Journal of Bacteriology. 190, 963-971 (2008).
Georgi, T., Engels, V., and Wendisch, Volker F. “Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum”. Journal of Bacteriology 190.3 (2008): 963-971.

30 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

LurR is a regulator of the central lactate oxidation pathway in sulfate-reducing Desulfovibrio species.
Rajeev L, Luning EG, Zane GM, Juba TR, Kazakov AE, Novichkov PS, Wall JD, Mukhopadhyay A., PLoS One 14(4), 2019
PMID: 30964892
Mce2R/Rv0586 of Mycobacterium tuberculosis is the functional homologue of FadRE. coli.
Yousuf S, Angara RK, Roy A, Gupta SK, Misra R, Ranjan A., Microbiology 164(9), 2018
PMID: 29993358
Lactate oxidation facilitates growth of Mycobacterium tuberculosis in human macrophages.
Billig S, Schneefeld M, Huber C, Grassl GA, Eisenreich W, Bange FC., Sci Rep 7(1), 2017
PMID: 28744015
Regulons of global transcription factors in Corynebacterium glutamicum.
Toyoda K, Inui M., Appl Microbiol Biotechnol 100(1), 2016
PMID: 26496920
A novel pyruvate kinase and its application in lactic acid production under oxygen deprivation in Corynebacterium glutamicum.
Chai X, Shang X, Zhang Y, Liu S, Liang Y, Zhang Y, Wen T., BMC Biotechnol 16(1), 2016
PMID: 27852252
Enantioselective regulation of lactate racemization by LarR in Lactobacillus plantarum.
Desguin B, Goffin P, Bakouche N, Diman A, Viaene E, Dandoy D, Fontaine L, Hallet B, Hols P., J Bacteriol 197(1), 2015
PMID: 25349156
Microbial lactate utilization: enzymes, pathogenesis, and regulation.
Jiang T, Gao C, Ma C, Xu P., Trends Microbiol 22(10), 2014
PMID: 24950803
Corynebacterium glutamicum promoters: a practical approach.
Pátek M, Holátko J, Busche T, Kalinowski J, Nešvera J., Microb Biotechnol 6(2), 2013
PMID: 23305350
A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells.
San Martín A, Ceballo S, Ruminot I, Lerchundi R, Frommer WB, Barros LF., PLoS One 8(2), 2013
PMID: 23469056
Lactate utilization is regulated by the FadR-type regulator LldR in Pseudomonas aeruginosa.
Gao C, Hu C, Zheng Z, Ma C, Jiang T, Dou P, Zhang W, Che B, Wang Y, Lv M, Xu P., J Bacteriol 194(10), 2012
PMID: 22408166
Preferential utilization of D-lactate by Shewanella oneidensis.
Brutinel ED, Gralnick JA., Appl Environ Microbiol 78(23), 2012
PMID: 23001660
Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate.
Kato O, Youn JW, Stansen KC, Matsui D, Oikawa T, Wendisch VF., BMC Microbiol 10(), 2010
PMID: 21159175
Regulation of ldh expression during biotin-limited growth of Corynebacterium glutamicum.
Dietrich C, Nato A, Bost B, Le Maréchal P, Guyonvarch A., Microbiology 155(pt 4), 2009
PMID: 19332837
Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum.
Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H., Appl Environ Microbiol 75(11), 2009
PMID: 19346355
Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum.
Youn JW, Jolkver E, Krämer R, Marin K, Wendisch VF., J Bacteriol 191(17), 2009
PMID: 19581365
Visualizing post genomics data-sets on customized pathway maps by ProMeTra-aeration-dependent gene expression and metabolism of Corynebacterium glutamicum as an example.
Neuweger H, Persicke M, Albaum SP, Bekel T, Dondrup M, Hüser AT, Winnebald J, Schneider J, Kalinowski J, Goesmann A., BMC Syst Biol 3(), 2009
PMID: 19698148
Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum.
Youn JW, Jolkver E, Krämer R, Marin K, Wendisch VF., J Bacteriol 190(19), 2008
PMID: 18658264
Structural and functional characterization of the LldR from Corynebacterium glutamicum: a transcriptional repressor involved in L-lactate and sugar utilization.
Gao YG, Suzuki H, Itou H, Zhou Y, Tanaka Y, Wachi M, Watanabe N, Tanaka I, Yao M., Nucleic Acids Res 36(22), 2008
PMID: 18988622

59 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 1967

AUTHOR UNKNOWN, 0
The respiratory chain of Corynebacterium glutamicum.
Bott M, Niebisch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948635
FadR, transcriptional co-ordination of metabolic expediency.
Cronan JE Jr, Subrahmanyam S., Mol. Microbiol. 29(4), 1998
PMID: 9767562

AUTHOR UNKNOWN, 1997
Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose.
Dominguez H, Rollin C, Guyonvarch A, Guerquin-Kern JL, Cocaign-Bousquet M, Lindley ND., Eur. J. Biochem. 254(1), 1998
PMID: 9652400
Three overlapping lct genes involved in L-lactate utilization by Escherichia coli.
Dong JM, Taylor JS, Latour DJ, Iuchi S, Lin EC., J. Bacteriol. 175(20), 1993
PMID: 8407843
Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product.
Duncan SH, Louis P, Flint HJ., Appl. Environ. Microbiol. 70(10), 2004
PMID: 15466518

AUTHOR UNKNOWN, 0
The gluconate operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator.
Fujita Y, Fujita T., Proc. Natl. Acad. Sci. U.S.A. 84(13), 1987
PMID: 3037520
RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum.
Gerstmeir R, Cramer A, Dangel P, Schaffer S, Eikmanns BJ., J. Bacteriol. 186(9), 2004
PMID: 15090522
Acetate metabolism and its regulation in Corynebacterium glutamicum.
Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ., J. Biotechnol. 104(1-3), 2003
PMID: 12948633

AUTHOR UNKNOWN, 1985
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
The surface (S)-layer gene cspB of Corynebacterium glutamicum is transcriptionally activated by a LuxR-type regulator and located on a 6 kb genomic island absent from the type strain ATCC 13032.
Hansmeier N, Albersmeier A, Tauch A, Damberg T, Ros R, Anselmetti D, Puhler A, Kalinowski J., Microbiology (Reading, Engl.) 152(Pt 4), 2006
PMID: 16549657
Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions.
Inui M, Murakami S, Okino S, Kawaguchi H, Vertes AA, Yukawa H., J. Mol. Microbiol. Biotechnol. 7(4), 2004
PMID: 15383716
The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses.
Ishige T, Krause M, Bott M, Wendisch VF, Sahm H., J. Bacteriol. 185(15), 2003
PMID: 12867461
Gene expression analysis of Corynebacterium glutamicum subjected to long-term lactic acid adaptation.
Jakob K, Satorhelyi P, Lange C, Wendisch VF, Silakowski B, Scherer S, Neuhaus K., J. Bacteriol. 189(15), 2007
PMID: 17526706

AUTHOR UNKNOWN, 2002
Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose.
Kiefer P, Heinzle E, Zelder O, Wittmann C., Appl. Environ. Microbiol. 70(1), 2004
PMID: 14711646

AUTHOR UNKNOWN, 1957
Uptake of glutamate in Corynebacterium glutamicum. 1. Kinetic properties and regulation by internal pH and potassium.
Kramer R, Lambert C, Hoischen C, Ebbighausen H., Eur. J. Biochem. 194(3), 1990
PMID: 1980106
Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of L-valine.
Lange C, Rittmann D, Wendisch VF, Bott M, Sahm H., Appl. Environ. Microbiol. 69(5), 2003
PMID: 12732517
Vanillate metabolism in Corynebacterium glutamicum.
Merkens H, Beckers G, Wirtz A, Burkovski A., Curr. Microbiol. 51(1), 2005
PMID: 15971090
Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032.
Moon MW, Kim HJ, Oh TK, Shin CS, Lee JS, Kim SJ, Lee JK., FEMS Microbiol. Lett. 244(2), 2005
PMID: 15766777
Cometabolism of a nongrowth substrate: L-serine utilization by Corynebacterium glutamicum.
Netzer R, Peters-Wendisch P, Eggeling L, Sahm H., Appl. Environ. Microbiol. 70(12), 2004
PMID: 15574911
Transport of L-Lactate, D-Lactate, and glycolate by the LldP and GlcA membrane carriers of Escherichia coli.
Nunez MF, Kwon O, Wilson TH, Aguilar J, Baldoma L, Lin EC., Biochem. Biophys. Res. Commun. 290(2), 2002
PMID: 11785976
Promoters of Corynebacterium glutamicum.
Patek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G., J. Biotechnol. 104(1-3), 2003
PMID: 12948648

AUTHOR UNKNOWN, 1997
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays.
Polen T, Wendisch VF., Appl. Biochem. Biotechnol. 118(1-3), 2004
PMID: 15304751

AUTHOR UNKNOWN, 1996
Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies.
Rigali S, Derouaux A, Giannotta F, Dusart J., J. Biol. Chem. 277(15), 2001
PMID: 11756427

AUTHOR UNKNOWN, 2001
A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum.
Schaffer S, Weil B, Nguyen VD, Dongmann G, Gunther K, Nickolaus M, Hermann T, Bott M., Electrophoresis 22(20), 2001
PMID: 11824608
Mapping the membrane proteome of Corynebacterium glutamicum.
Schluesener D, Fischer F, Kruip J, Rogner M, Poetsch A., Proteomics 5(5), 2005
PMID: 15717325
S-layer protein production by Corynebacterium strains is dependent on the carbon source.
Soual-Hoebeke E, de Sousa-D'Auria C, Chami M, Baucher MF, Guyonvarch A, Bayan N, Salim K, Leblon G., Microbiology (Reading, Engl.) 145 ( Pt 12)(), 1999
PMID: 10627038
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505

AUTHOR UNKNOWN, 2005
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18039772
PubMed | Europe PMC

Suchen in

Google Scholar