The Global Repressor SugR Controls Expression of Genes of Glycolysis and of the L-Lactate Dehydrogenase LdhA in Corynebacterium glutamicum

Engels V, Lindner S, Wendisch VF (2008)
Journal of Bacteriology 190(24): 8033-8044.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
The transcriptional regulator SugR from Corynebacterium glutamicum represses genes of the phosphoenol-pyruvate-dependent phosphotransferase system (PTS). Growth experiments revealed that the overexpression of sugR not only perturbed the growth of C. glutamicum on the PTS sugars glucose, fructose, and sucrose but also led to a significant growth inhibition on ribose, which is not taken up via the PTS. Chromatin immuno-precipitation combined with DNA microarray analysis and gel retardation experiments were performed to identify further target genes of SugR. Gel retardation analysis confirmed that SugR bound to the promoter regions of genes of the glycolytic enzymes 6-phosphofructokinase (pfkA), fructose-1,6-bisphosphate aldolase (fba), enolase (eno), pyruvate kinase (pyk), and NAD-dependent L-lactate dehydrogenase (ldhA). The deletion of sugR resulted in increased mRNA levels of eno, pyk, and ldhA in acetate medium. Enzyme activity measurements revealed that SugR-mediated repression affects the activities of PfkA, Fba, and LdhA in vivo. As the deletion of sugR led to increased LdhA activity under aerobic and under oxygen deprivation conditions, L-lactate production by C. glutamicum was determined. The overexpression of sugR reduced L-lactate production by about 25%, and sugR deletion increased L-lactate formation under oxygen deprivation conditions by threefold. Thus, SugR functions as a global repressor of genes of the PTS, glycolysis, and fermentative L-lactate dehydrogenase in C. glutamicum.
Stichworte
acetate metabolism; bacillus-subtilis; transcriptional regulator; escherichia-coli; oxygen deprivation conditions; phosphotransferase system pts; amino-acids; catabolite repression; lysine production; brevibacterium-flavum
Erscheinungsjahr
2008
Zeitschriftentitel
Journal of Bacteriology
Band
190
Ausgabe
24
Seite(n)
8033-8044
ISSN
0021-9193
Page URI
https://pub.uni-bielefeld.de/record/1894971

Zitieren

Engels V, Lindner S, Wendisch VF. The Global Repressor SugR Controls Expression of Genes of Glycolysis and of the L-Lactate Dehydrogenase LdhA in Corynebacterium glutamicum. Journal of Bacteriology. 2008;190(24):8033-8044.
Engels, V., Lindner, S., & Wendisch, V. F. (2008). The Global Repressor SugR Controls Expression of Genes of Glycolysis and of the L-Lactate Dehydrogenase LdhA in Corynebacterium glutamicum. Journal of Bacteriology, 190(24), 8033-8044. https://doi.org/10.1128/Jb.00705-08
Engels, V., Lindner, Steffen, and Wendisch, Volker F. 2008. “The Global Repressor SugR Controls Expression of Genes of Glycolysis and of the L-Lactate Dehydrogenase LdhA in Corynebacterium glutamicum”. Journal of Bacteriology 190 (24): 8033-8044.
Engels, V., Lindner, S., and Wendisch, V. F. (2008). The Global Repressor SugR Controls Expression of Genes of Glycolysis and of the L-Lactate Dehydrogenase LdhA in Corynebacterium glutamicum. Journal of Bacteriology 190, 8033-8044.
Engels, V., Lindner, S., & Wendisch, V.F., 2008. The Global Repressor SugR Controls Expression of Genes of Glycolysis and of the L-Lactate Dehydrogenase LdhA in Corynebacterium glutamicum. Journal of Bacteriology, 190(24), p 8033-8044.
V. Engels, S. Lindner, and V.F. Wendisch, “The Global Repressor SugR Controls Expression of Genes of Glycolysis and of the L-Lactate Dehydrogenase LdhA in Corynebacterium glutamicum”, Journal of Bacteriology, vol. 190, 2008, pp. 8033-8044.
Engels, V., Lindner, S., Wendisch, V.F.: The Global Repressor SugR Controls Expression of Genes of Glycolysis and of the L-Lactate Dehydrogenase LdhA in Corynebacterium glutamicum. Journal of Bacteriology. 190, 8033-8044 (2008).
Engels, V., Lindner, Steffen, and Wendisch, Volker F. “The Global Repressor SugR Controls Expression of Genes of Glycolysis and of the L-Lactate Dehydrogenase LdhA in Corynebacterium glutamicum”. Journal of Bacteriology 190.24 (2008): 8033-8044.

39 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The RamA regulon: complex regulatory interactions in relation to central metabolism in Corynebacterium glutamicum.
Shah A, Blombach B, Gauttam R, Eikmanns BJ., Appl Microbiol Biotechnol 102(14), 2018
PMID: 29804137
Efficient Production of the Dicarboxylic Acid Glutarate by Corynebacterium glutamicum via a Novel Synthetic Pathway.
Pérez-García F, Jorge JMP, Dreyszas A, Risse JM, Wendisch VF., Front Microbiol 9(), 2018
PMID: 30425699
Whole-cell Escherichia coli lactate biosensor for monitoring mammalian cell cultures during biopharmaceutical production.
Goers L, Ainsworth C, Goey CH, Kontoravdi C, Freemont PS, Polizzi KM., Biotechnol Bioeng 114(6), 2017
PMID: 28112405
A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources.
Jorge JMP, Pérez-García F, Wendisch VF., Bioresour Technol 245(pt b), 2017
PMID: 28522202
pH fluctuations imperil the robustness of C. glutamicum to short term oxygen limitation.
Limberg MH, Joachim M, Klein B, Wiechert W, Oldiges M., J Biotechnol 259(), 2017
PMID: 28837821
Regulons of global transcription factors in Corynebacterium glutamicum.
Toyoda K, Inui M., Appl Microbiol Biotechnol 100(1), 2016
PMID: 26496920
Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.
Pérez-García F, Peters-Wendisch P, Wendisch VF., Appl Microbiol Biotechnol 100(18), 2016
PMID: 27345060
Application of CRISPRi in Corynebacterium glutamicum for shikimic acid production.
Zhang B, Liu ZQ, Liu C, Zheng YG., Biotechnol Lett 38(12), 2016
PMID: 27623797
A novel pyruvate kinase and its application in lactic acid production under oxygen deprivation in Corynebacterium glutamicum.
Chai X, Shang X, Zhang Y, Liu S, Liang Y, Zhang Y, Wen T., BMC Biotechnol 16(1), 2016
PMID: 27852252
Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Krämer R, Wendisch VF, Seibold GM., Appl Microbiol Biotechnol 98(12), 2014
PMID: 24668244
Adaptation of Bacillus subtilis carbon core metabolism to simultaneous nutrient limitation and osmotic challenge: a multi-omics perspective.
Kohlstedt M, Sappa PK, Meyer H, Maaß S, Zaprasis A, Hoffmann T, Becker J, Steil L, Hecker M, van Dijl JM, Lalk M, Mäder U, Stülke J, Bremer E, Völker U, Wittmann C., Environ Microbiol 16(6), 2014
PMID: 24571712
Genome-wide analysis of the role of global transcriptional regulator GntR1 in Corynebacterium glutamicum.
Tanaka Y, Takemoto N, Ito T, Teramoto H, Yukawa H, Inui M., J Bacteriol 196(18), 2014
PMID: 24982307
Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains.
Lindner SN, Petrov DP, Hagmann CT, Henrich A, Krämer R, Eikmanns BJ, Wendisch VF, Seibold GM., Appl Environ Microbiol 79(8), 2013
PMID: 23396334
Maltose uptake by the novel ABC transport system MusEFGK2I causes increased expression of ptsG in Corynebacterium glutamicum.
Henrich A, Kuhlmann N, Eck AW, Krämer R, Seibold GM., J Bacteriol 195(11), 2013
PMID: 23543710
Proteome response of Corynebacterium glutamicum to high concentration of industrially relevant C₄ and C₅ dicarboxylic acids.
Vasco-Cárdenas MF, Baños S, Ramos A, Martín JF, Barreiro C., J Proteomics 85(), 2013
PMID: 23624027
Link between phosphate starvation and glycogen metabolism in Corynebacterium glutamicum, revealed by metabolomics.
Woo HM, Noack S, Seibold GM, Willbold S, Eikmanns BJ, Bott M., Appl Environ Microbiol 76(20), 2010
PMID: 20802079

64 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 1967

AUTHOR UNKNOWN, 2008
The value of prior knowledge in discovering motifs with MEME.
Bailey TL, Elkan C., Proc Int Conf Intell Syst Mol Biol 3(), 1995
PMID: 7584439
Fructose utilization in Lactococcus lactis as a model for low-GC gram-positive bacteria: its regulator, signal, and DNA-binding site.
Barriere C, Veiga-da-Cunha M, Pons N, Guedon E, van Hijum SA, Kok J, Kuipers OP, Ehrlich DS, Renault P., J. Bacteriol. 187(11), 2005
PMID: 15901699

AUTHOR UNKNOWN, 1974

AUTHOR UNKNOWN, 0
The ldhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli.
Bunch PK, Mat-Jan F, Lee N, Clark DP., Microbiology (Reading, Engl.) 143 ( Pt 1)(), 1997
PMID: 9025293

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 2002

AUTHOR UNKNOWN, 1997
Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose.
Dominguez H, Rollin C, Guyonvarch A, Guerquin-Kern JL, Cocaign-Bousquet M, Lindley ND., Eur. J. Biochem. 254(1), 1998
PMID: 9652400

AUTHOR UNKNOWN, 2005
Purification and characterization of fumarase from Corynebacterium glutamicum.
Genda T, Watabe S, Ozaki H., Biosci. Biotechnol. Biochem. 70(5), 2006
PMID: 16717409
RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum.
Gerstmeir R, Cramer A, Dangel P, Schaffer S, Eikmanns BJ., J. Bacteriol. 186(9), 2004
PMID: 15090522
Transcriptome analysis of Crp-dependent catabolite control of gene expression in Escherichia coli.
Gosset G, Zhang Z, Nayyar S, Cuevas WA, Saier MH Jr., J. Bacteriol. 186(11), 2004
PMID: 15150239
Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome.
Grainger DC, Hurd D, Harrison M, Holdstock J, Busby SJ., Proc. Natl. Acad. Sci. U.S.A. 102(49), 2005
PMID: 16301522

AUTHOR UNKNOWN, 1985
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Industrial production of amino acids by coryneform bacteria.
Hermann T., J. Biotechnol. 104(1-3), 2003
PMID: 12948636
Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions.
Inui M, Murakami S, Okino S, Kawaguchi H, Vertes AA, Yukawa H., J. Mol. Microbiol. Biotechnol. 7(4), 2004
PMID: 15383716
Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions.
Inui M, Suda M, Okino S, Nonaka H, Puskas LG, Vertes AA, Yukawa H., Microbiology (Reading, Engl.) 153(Pt 8), 2007
PMID: 17660414
Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF.
Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO., Nature 409(6819), 2001
PMID: 11206552
Structural and functional analysis of pyruvate kinase from Corynebacterium glutamicum.
Jetten MS, Gubler ME, Lee SH, Sinskey AJ., Appl. Environ. Microbiol. 60(7), 1994
PMID: 8074528
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626

AUTHOR UNKNOWN, 1957
Transcriptional regulation by cAMP and its receptor protein.
Kolb A, Busby S, Buc H, Garges S, Adhya S., Annu. Rev. Biochem. 62(), 1993
PMID: 8394684
Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum.
Letek M, Valbuena N, Ramos A, Ordonez E, Gil JA, Mateos LM., J. Bacteriol. 188(2), 2006
PMID: 16385030
Biotechnological production of amino acids and derivatives: current status and prospects.
Leuchtenberger W, Huthmacher K, Drauz K., Appl. Microbiol. Biotechnol. 69(1), 2005
PMID: 16195792
Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements.
Miwa Y, Nagura K, Eguchi S, Fukuda H, Deutscher J, Fujita Y., Mol. Microbiol. 23(6), 1997
PMID: 9106211
Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032.
Moon MW, Kim HJ, Oh TK, Shin CS, Lee JS, Kim SJ, Lee JK., FEMS Microbiol. Lett. 244(2), 2005
PMID: 15766777
Purification and characterization of the deoR repressor of Escherichia coli.
Mortensen L, Dandanell G, Hammer K., EMBO J. 8(1), 1989
PMID: 2653814
Corynebacterium glutamicum: a dissection of the PTS.
Parche S, Burkovski A, Sprenger GA, Weil B, Kramer R, Titgemeyer F., J. Mol. Microbiol. Biotechnol. 3(3), 2001
PMID: 11361073
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586

AUTHOR UNKNOWN, 2001

AUTHOR UNKNOWN, 2003
CcpA mutants with differential activities in Bacillus subtilis.
Sprehe M, Seidel G, Diel M, Hillen W., J. Mol. Microbiol. Biotechnol. 12(1-2), 2007
PMID: 17183216

AUTHOR UNKNOWN, 1997
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505

AUTHOR UNKNOWN, 1989

AUTHOR UNKNOWN, 1989
Regulation of the expression of phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) genes in Corynebacterium glutamicum R.
Tanaka Y, Okai N, Teramoto H, Inui M, Yukawa H., Microbiology (Reading, Engl.) 154(Pt 1), 2008
PMID: 18174145
Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis.
Tobisch S, Zuhlke D, Bernhardt J, Stulke J, Hecker M., J. Bacteriol. 181(22), 1999
PMID: 10559165

AUTHOR UNKNOWN, 2006
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18849435
PubMed | Europe PMC

Suchen in

Google Scholar