Life-history consequences of adaptation to larval nutritional stress in Drosophila

Kolß M, Vijendravarma RK, Schwaller G, Kawecki TJ (2009)
Evolution 63(9): 2389-2401.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Kolß, MunjongUniBi; Vijendravarma, R. K.; Schwaller, G.; Kawecki, T. J.
Abstract / Bemerkung
Many animal species face periods of chronic nutritional stress during which the individuals must continue to develop, grow, and/or reproduce despite low quantity or quality of food. Here, we use experimental evolution to study adaptation to such chronic nutritional stress in six replicate Drosophila melanogaster populations selected for the ability to survive and develop within a limited time on a very poor larval food. In unselected control populations, this poor food resulted in 20% lower egg-to-adult viability, 70% longer egg-to-adult development, and 50% lower adult body weight (compared to the standard food on which the flies were normally maintained). The evolutionary changes associated with adaptation to the poor food were assayed by comparing the selected and control lines in a common environment for different traits after 29-64 generations of selection. The selected populations evolved improved egg-to-adult viability and faster development on poor food. Even though the adult dry weight of selected flies when raised on the poor food was lower than that of controls, their average larval growth rate was higher. No differences in proportional pupal lipid content were observed. When raised on the standard food, the selected flies showed the same egg-to-adult viability and the same resistance to larval heat and cold shock as the controls and a slightly shorter developmental time. However, despite only 4% shorter development time, the adults of selected populations raised on the standard food were 13% smaller and showed 20% lower early-life fecundity than the controls, with no differences in life span. The selected flies also turned out less tolerant to adult malnutrition. Thus, fruit flies have the genetic potential to adapt to poor larval food, with no detectable loss of larval performance on the standard food. However, adaptation to larval nutritional stress is associated with trade-offs with adult fitness components, including adult tolerance to nutritional stress.
Page URI


Kolß M, Vijendravarma RK, Schwaller G, Kawecki TJ. Life-history consequences of adaptation to larval nutritional stress in Drosophila. Evolution. 2009;63(9):2389-2401.
Kolß, M., Vijendravarma, R. K., Schwaller, G., & Kawecki, T. J. (2009). Life-history consequences of adaptation to larval nutritional stress in Drosophila. Evolution, 63(9), 2389-2401.
Kolß, Munjong, Vijendravarma, R. K., Schwaller, G., and Kawecki, T. J. 2009. “Life-history consequences of adaptation to larval nutritional stress in Drosophila”. Evolution 63 (9): 2389-2401.
Kolß, M., Vijendravarma, R. K., Schwaller, G., and Kawecki, T. J. (2009). Life-history consequences of adaptation to larval nutritional stress in Drosophila. Evolution 63, 2389-2401.
Kolß, M., et al., 2009. Life-history consequences of adaptation to larval nutritional stress in Drosophila. Evolution, 63(9), p 2389-2401.
M. Kolß, et al., “Life-history consequences of adaptation to larval nutritional stress in Drosophila”, Evolution, vol. 63, 2009, pp. 2389-2401.
Kolß, M., Vijendravarma, R.K., Schwaller, G., Kawecki, T.J.: Life-history consequences of adaptation to larval nutritional stress in Drosophila. Evolution. 63, 2389-2401 (2009).
Kolß, Munjong, Vijendravarma, R. K., Schwaller, G., and Kawecki, T. J. “Life-history consequences of adaptation to larval nutritional stress in Drosophila”. Evolution 63.9 (2009): 2389-2401.

42 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Phenotypic variation in food utilization in an outbreak insect herbivore.
Quezada-García R, Fuentealba Á, Bauce É., Insect Sci 25(3), 2018
PMID: 27862974
Hormesis-like effect of mild larval crowding on thermotolerance in Drosophila flies.
Henry Y, Renault D, Colinet H., J Exp Biol 221(pt 2), 2018
PMID: 29191860
Prothoracicotropic hormone modulates environmental adaptive plasticity through the control of developmental timing.
Shimell M, Pan X, Martin FA, Ghosh AC, Leopold P, O'Connor MB, Romero NM., Development 145(6), 2018
PMID: 29467242
High fat diet alters Drosophila melanogaster sexual behavior and traits: decreased attractiveness and changes in pheromone profiles.
Schultzhaus JN, Bennett CJ, Iftikhar H, Yew JY, Mallett J, Carney GE., Sci Rep 8(1), 2018
PMID: 29599496
Evolutionary responses of Drosophila melanogaster under chronic malnutrition.
Ahmad M, Keebaugh ES, Tariq M, Ja WW., Front Ecol Evol 6(), 2018
PMID: 31286000
Evolution Under Dietary Restriction Decouples Survival From Fecundity in Drosophila melanogaster Females.
Zajitschek F, Georgolopoulos G, Vourlou A, Ericsson M, Zajitschek SRK, Friberg U, Maklakov AA., J Gerontol A Biol Sci Med Sci (), 2018
PMID: 29718269
Sex differences in dispersal syndrome are modulated by environment and evolution.
Mishra A, Tung S, Shreenidhi PM, Aamir Sadiq M, Shree Sruti VR, Chakraborty PP, Dey S., Philos Trans R Soc Lond B Biol Sci 373(1757), 2018
PMID: 30150226
Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness.
Aw WC, Towarnicki SG, Melvin RG, Youngson NA, Garvin MR, Hu Y, Nielsen S, Thomas T, Pickford R, Bustamante S, Vila-Sanjurjo A, Smyth GK, Ballard JWO., PLoS Genet 14(11), 2018
PMID: 30399141
Fitness components of Drosophila melanogaster developed on a standard laboratory diet or a typical natural food source.
Kristensen TN, Henningsen AK, Aastrup C, Bech-Hansen M, Bjerre LB, Carlsen B, Hagstrup M, Jensen SG, Karlsen P, Kristensen L, Lundsgaard C, Møller T, Nielsen LD, Starcke C, Sørensen CR, Schou MF., Insect Sci 23(5), 2016
PMID: 25989059
Prepupal building behavior in Drosophila melanogaster and its evolution under resource and time constraints.
Narasimha S, Kolly S, Sokolowski MB, Kawecki TJ, Vijendravarma RK., PLoS One 10(2), 2015
PMID: 25671711
Gut physiology mediates a trade-off between adaptation to malnutrition and susceptibility to food-borne pathogens.
Vijendravarma RK, Narasimha S, Chakrabarti S, Babin A, Kolly S, Lemaitre B, Kawecki TJ., Ecol Lett 18(10), 2015
PMID: 26249109
Starvation-Induced Dietary Behaviour in Drosophila melanogaster Larvae and Adults.
Ahmad M, Chaudhary SU, Afzal AJ, Tariq M., Sci Rep 5(), 2015
PMID: 26399327
Predatory cannibalism in Drosophila melanogaster larvae.
Vijendravarma RK, Narasimha S, Kawecki TJ., Nat Commun 4(), 2013
PMID: 23653201
Chronic malnutrition favours smaller critical size for metamorphosis initiation in Drosophila melanogaster.
Vijendravarma RK, Narasimha S, Kawecki TJ., J Evol Biol 25(2), 2012
PMID: 22122120
Reproduction-longevity trade-offs reflect diet, not adaptation.
Attisano A, Moore AJ, Moore PJ., J Evol Biol 25(5), 2012
PMID: 22356585
Evolution of foraging behaviour in response to chronic malnutrition in Drosophila melanogaster.
Vijendravarma RK, Narasimha S, Kawecki TJ., Proc Biol Sci 279(1742), 2012
PMID: 22696523
Experimental evolution.
Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, Whitlock MC., Trends Ecol Evol 27(10), 2012
PMID: 22819306
Dietary protein content affects evolution for body size, body fat and viability in Drosophila melanogaster.
Kristensen TN, Overgaard J, Loeschcke V, Mayntz D., Biol Lett 7(2), 2011
PMID: 20980292
Adaptation to larval malnutrition does not affect fluctuating asymmetry in Drosophila melanogaster
PMID: IND44767841
Effects of parental larval diet on egg size and offspring traits in Drosophila.
Vijendravarma RK, Narasimha S, Kawecki TJ., Biol Lett 6(2), 2010
PMID: 19875510

72 References

Daten bereitgestellt von Europe PubMed Central.

The effects of larval density on adult life-history traits in three species of Drosophila.
Baldal EA, van der Linde K, van Alphen JJ, Brakefield PM, Zwaan BJ., Mech. Ageing Dev. 126(3), 2005
PMID: 15664627
Density-dependent evolution of life-history traits in Drosophila melanogaster.
Bierbaum TJ, Mueller LD, Ayala FJ., Evolution 43(2), 1989
PMID: IND89023630
The evolution of body size: what keeps organisms small?
Blanckenhorn, Quart. Rev. Biol. 75(), 2000
A reassessment of genetic limits to evolutionary change
Blows, Ecology 86(), 2005
Density-dependent natural selection in Drosophila: correlations between feeding rate, development time and viability
Borash, J. Evol. Biol. 13(), 2000
Artificial selection and the development of ecologically relevant phenotypes
Brakefield, Ecology 84(), 2003
Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands.
Broughton SJ, Piper MD, Ikeya T, Bass TM, Jacobson J, Driege Y, Martinez P, Hafen E, Withers DJ, Leevers SJ, Partridge L., Proc. Natl. Acad. Sci. U.S.A. 102(8), 2005
PMID: 15708981
The evolution of development in Drosophila melanogaster selected for postponed senescence
Chippindale, Evolution 48(), 1994
The influence of plant secondary metabolites on the nutritional ecology of herbivorous terrestrial vertebrates
Dearing, Annu. Rev. Ecol. Evol. Syst. 36(), 2005
Does selection for stress resistance lower metabolic rate?
Djawdan, Ecology 78(), 1997
Metabolic reserves and evolved stress resistance in Drosophila melanogaster.
Djawdan M, Chippindale AK, Rose MR, Bradley TJ., Physiol. Zool. 71(5), 1998
PMID: 9754535
Maintaining a behaviour polymorphism by frequency-dependent selection on a single gene.
Fitzpatrick MJ, Feder E, Rowe L, Sokolowski MB., Nature 447(7141), 2007
PMID: 17495926
Predictive adaptive responses and human evolution.
Gluckman PD, Hanson MA, Spencer HG., Trends Ecol. Evol. (Amst.) 20(10), 2005
PMID: 16701430
Quantitative genomics of starvation stress resistance in Drosophila.
Harbison ST, Chang S, Kamdar KP, Mackay TF., Genome Biol. 6(4), 2005
PMID: 15833123
Selection for starvation resistance in Drosophila melanogaster: physiological correlates, enzyme activities and multiple stress responses
Harshman, J. Evol. Biol. 12(), 1999
Stress resistance and longevity in selected lines of Drosophila melanogaster.
Harshman LG, Moore KM, Sty MA, Magwire MM., Neurobiol. Aging 20(5), 1999
PMID: 10638525

Hoffman, 1991
Are fitness effects of density mediated by body size? Evidence from Drosophila field releases
Hoffmann, Evol. Ecol. Res. 8(), 2006
Low potential for climatic stress adaptation in a rainforest Drosophila species.
Hoffmann AA, Hallas RJ, Dean JA, Schiffer M., Science 301(5629), 2003
PMID: 12843394
Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster.
Hoffmann AA, Hallas R, Anderson AR, Telonis-Scott M., J. Evol. Biol. 18(4), 2005
PMID: 16033551
Antagonistic selection between adult thorax and wing size in field released Drosophila melanogaster independent of thermal conditions.
Hoffmann AA, Ratna E, Sgro CM, Barton M, Blacket M, Hallas R, De Garis S, Weeks AR., J. Evol. Biol. 20(6), 2007
PMID: 17887974

Density-dependent natural selection in Drosophila: trade-offs between larval food acquisition and utilization
Joshi, Evol. Ecol. 10(), 1996
Very low additive genetic variance and evolutionary potential in multiple populations of two rainforest Drosophila species.
Kellermann VM, Van Heerwaarden B, Hoffmann AA, Sgro CM., Evolution 60(5), 2006
PMID: 16817549
A conserved regulatory system for aging.
Kenyon C., Cell 105(2), 2001
PMID: 11336665
Limits to the energy budget in a rodent, Peromyscus maniculatus: does gut capacity set the limit?
Koteja, Physiol. Zool 69(), 1996
Demography of dietary restriction and death in Drosophila.
Mair W, Goymer P, Pletcher SD, Partridge L., Science 301(5640), 2003
PMID: 14500985
Experimental evolution of learning ability in fruit flies.
Mery F, Kawecki TJ., Proc. Natl. Acad. Sci. U.S.A. 99(22), 2002
PMID: 12391295
Yeast communities of the cactus Pilosocereus arrabidae as resources for larval and adult stages of Drosophila serido.
Morais PB, Rosa CA, Hagler AN, Mendonca-Hagler LC., Antonie Van Leeuwenhoek 66(4), 1994
PMID: 7710278
Density-dependent natural selection does not increase efficiency
Mueller, Evol. Ecol. 4(), 1990
Evolving evolvability.
Partridge L, Barton NH., Nature 407(6803), 2000
PMID: 11028981
Male size and mating success in Drosophila melanogaster and D. pseudoobscura under field conditions
Partridge, Anim. Behav. 35(), 1987
Another set of responses and correlated responses to selection on age at reproduction in Drosophila melanogaster
Partridge, Proc. R. Soc. Lond. B 266(), 1999
Dietary restriction in Drosophila.
Partridge L, Piper MD, Mair W., Mech. Ageing Dev. 126(9), 2005
PMID: 15935441
Phenotypic plasticity of starvation resistance in the butterfly Bicyclus anynana
Pijpe, Evol. Ecol. 21(), 2007
Studies in quantitative inheritance. XI. Genetic and environmental correlation between body size and egg production in Drosophila melanogaster
Robertson, J. Genet. 55(), 1957
Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction.
Rogina B, Helfand SL, Frankel S., Science 298(5599), 2002
PMID: 12459580
Laboratory evolution of postponed senescence in Drosophila melanogaster
Rose, Evolution 38(), 1984
Selection on stress resistance increases longevity in Drosophila melanogaster.
Rose MR, Vu LN, Park SU, Graves JL Jr., Exp. Gerontol. 27(2), 1992
PMID: 1521597
Evolutionary change in parasitoid resistance under crowded conditions in Drosophila melanogaster.
Sanders AE, Scarborough C, Layen SJ, Kraaijeveld AR, Godfray HC., Evolution 59(6), 2005
PMID: 16050105
Density-dependent natural selection in Drosophila: evolution of growth rate and body size.
Santos M, Borash DJ, Joshi A, Bounlutay N, Mueller LD., Evolution 51(2), 1997
PMID: IND20580633

Schlichting, 1998
Multiple genetic mechanisms for the evolution of senescence in Drosophila melanogaster.
Service PM, Hutchinson EW, Rose MR., Evolution 42(4), 1988
PMID: IND88031996

Sevenster, 1993
A life history trade-off in Drosophila species and community structure in variable environments
Sevenster, J. Anim. Ecol. 62(), 1993
Distribution and abundance of woodland species of British Drosophila (Diptera - Drosophilidae)
Shorrocks, J. Anim. Ecol. 44(), 1975

Snedecor, 1967

Stearns, 1992
The evolutionary links between fixed and variable traits
Stearns, Acta Paleontol. Polon. 38(), 1994

Strasssmann, 1999
The endocrine regulation of aging by insulin-like signals.
Tatar M, Bartke A, Antebi A., Science 299(5611), 2003
PMID: 12610294
Feeding and oviposition preferences of Drosophila buzzatii for microbial species isolated from its natural environment.
Vacek DC, East PD, Barker JSF, Soliman MH., Biol. J. Linn. Soc. Lond. 24(2), 1985
PMID: IND85060857
Local adaptation of developmental time and starvation resistance in eight Drosophila species of the Philippines
Van, Biol. J. Linn. Soc. 87(), 2006
Artificial selection for developmental time in Drosophila melanogaster in relation to the evolution of aging: direct and correlated responses
Zwaan, Evolution 49(), 1995
Direct selection on life span in Drosophila melanogaster
Zwaan, Evolution 49(), 1995

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 19473389
PubMed | Europe PMC

Suchen in

Google Scholar