The developmentally regulated ECM glycoprotein ISG plays an essential role in organizing the ECM and orienting the cells of Volvox
Hallmann A, Kirk DL (2000)
J Cell Sci. 113(24): 4605-4617.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Hallmann, ArminUniBi ;
Kirk, David L.
Abstract / Bemerkung
Volvox is one of the simplest multicellular organisms with only two cell types, yet it has a surprisingly complex extracellular matrix (ECM) containing many region-specific morphological components, making Volvox suitable as a model system for ECM investigations. ECM deposition begins shortly after inversion, which is the process by which the embryo turns itself right-side-out at the end of embryogenesis. It was previously shown that the gene encoding an ECM glycoprotein called ISG is transcribed very transiently during inversion. Here we show that the developmentally controlled ISG accumulates at the bases of the flagella right after inversion, before any morphologically recognizable ECM structures have yet developed. Later, ISG is abundant in the 'flagellar hillocks' that encircle the basal ends of all flagella, and in the adjacent 'boundary zone' that delimits the spheroid. Transgenic Volvox were generated which express a truncated form of ISG. These transgenics exhibit a severely disorganized ECM within which the cells are embedded in a highly chaotic manner that precludes motility. A synthetic version of the C- terminal decapeptide of ISG has a similar disorganizing effect, but only when it is applied during or shortly after inversion. We postulate that ISG plays a critical role in morphogenesis and acts as a key organizer of ECM architecture; at the very beginning of ECM formation ISG establishes an essential initial framework that both holds the somatic cells in an adaptive orientation and acts as the scaffold upon which the rest of the ECM can be properly assembled, assuring that somatic cells of post-inversion spheroids are held in orientations and locations that makes adaptive swimming behavior possible.
Erscheinungsjahr
2000
Zeitschriftentitel
J Cell Sci.
Band
113
Ausgabe
24
Seite(n)
4605-4617
ISSN
0021-9533
Page URI
https://pub.uni-bielefeld.de/record/1870285
Zitieren
Hallmann A, Kirk DL. The developmentally regulated ECM glycoprotein ISG plays an essential role in organizing the ECM and orienting the cells of Volvox. J Cell Sci. 2000;113(24):4605-4617.
Hallmann, A., & Kirk, D. L. (2000). The developmentally regulated ECM glycoprotein ISG plays an essential role in organizing the ECM and orienting the cells of Volvox. J Cell Sci., 113(24), 4605-4617.
Hallmann, Armin, and Kirk, David L. 2000. “The developmentally regulated ECM glycoprotein ISG plays an essential role in organizing the ECM and orienting the cells of Volvox”. J Cell Sci. 113 (24): 4605-4617.
Hallmann, A., and Kirk, D. L. (2000). The developmentally regulated ECM glycoprotein ISG plays an essential role in organizing the ECM and orienting the cells of Volvox. J Cell Sci. 113, 4605-4617.
Hallmann, A., & Kirk, D.L., 2000. The developmentally regulated ECM glycoprotein ISG plays an essential role in organizing the ECM and orienting the cells of Volvox. J Cell Sci., 113(24), p 4605-4617.
A. Hallmann and D.L. Kirk, “The developmentally regulated ECM glycoprotein ISG plays an essential role in organizing the ECM and orienting the cells of Volvox”, J Cell Sci., vol. 113, 2000, pp. 4605-4617.
Hallmann, A., Kirk, D.L.: The developmentally regulated ECM glycoprotein ISG plays an essential role in organizing the ECM and orienting the cells of Volvox. J Cell Sci. 113, 4605-4617 (2000).
Hallmann, Armin, and Kirk, David L. “The developmentally regulated ECM glycoprotein ISG plays an essential role in organizing the ECM and orienting the cells of Volvox”. J Cell Sci. 113.24 (2000): 4605-4617.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
18 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Cell-Type Transcriptomes of the Multicellular Green Alga Volvox carteri Yield Insights into the Evolutionary Origins of Germ and Somatic Differentiation Programs.
Matt GY, Umen JG., G3 (Bethesda) 8(2), 2018
PMID: 29208647
Matt GY, Umen JG., G3 (Bethesda) 8(2), 2018
PMID: 29208647
The emerging role of ECM crosslinking in T cell mobility as a hallmark of immunosenescence in humans.
Moreau JF, Pradeu T, Grignolio A, Nardini C, Castiglione F, Tieri P, Capri M, Salvioli S, Taupin JL, Garagnani P, Franceschi C., Ageing Res Rev 35(), 2017
PMID: 27876574
Moreau JF, Pradeu T, Grignolio A, Nardini C, Castiglione F, Tieri P, Capri M, Salvioli S, Taupin JL, Garagnani P, Franceschi C., Ageing Res Rev 35(), 2017
PMID: 27876574
Whole transcriptome RNA-Seq analysis reveals extensive cell type-specific compartmentalization in Volvox carteri.
Klein B, Wibberg D, Hallmann A., BMC Biol 15(1), 2017
PMID: 29179763
Klein B, Wibberg D, Hallmann A., BMC Biol 15(1), 2017
PMID: 29179763
Origins of multicellular complexity: Volvox and the volvocine algae.
Herron MD., Mol Ecol 25(6), 2016
PMID: 26822195
Herron MD., Mol Ecol 25(6), 2016
PMID: 26822195
Oxygen levels and the regulation of cell adhesion in the nervous system: a control point for morphogenesis in development, disease and evolution?
Crossin KL., Cell Adh Migr 6(1), 2012
PMID: 22647940
Crossin KL., Cell Adh Migr 6(1), 2012
PMID: 22647940
A comparative analysis of the volvocaceae (chlorophyta)1
Coleman AW., J Phycol 48(3), 2012
PMID: IND44783346
Coleman AW., J Phycol 48(3), 2012
PMID: IND44783346
Diverse evolutionary paths to cell adhesion.
Abedin M, King N., Trends Cell Biol 20(12), 2010
PMID: 20817460
Abedin M, King N., Trends Cell Biol 20(12), 2010
PMID: 20817460
Controlled enlargement of the glycoprotein vesicle surrounding a volvox embryo requires the InvB nucleotide-sugar transporter and is required for normal morphogenesis.
Ueki N, Nishii I., Plant Cell 21(4), 2009
PMID: 19346464
Ueki N, Nishii I., Plant Cell 21(4), 2009
PMID: 19346464
Resolving the first steps to multicellularity.
Sachs JL., Trends Ecol Evol 23(5), 2008
PMID: 18375012
Sachs JL., Trends Ecol Evol 23(5), 2008
PMID: 18375012
Morphogenesis in the family Volvocaceae: different tactics for turning an embryo right-side out.
Hallmann A., Protist 157(4), 2006
PMID: 16854623
Hallmann A., Protist 157(4), 2006
PMID: 16854623
A posttranslationally regulated protease, VheA, is involved in the liberation of juveniles from parental spheroids in Volvox carteri.
Fukada K, Inoue T, Shiraishi H., Plant Cell 18(10), 2006
PMID: 17028206
Fukada K, Inoue T, Shiraishi H., Plant Cell 18(10), 2006
PMID: 17028206
A twelve-step program for evolving multicellularity and a division of labor.
Kirk DL., Bioessays 27(3), 2005
PMID: 15714559
Kirk DL., Bioessays 27(3), 2005
PMID: 15714559
A kinesin, invA, plays an essential role in volvox morphogenesis.
Nishii I, Ogihara S, Kirk DL., Cell 113(6), 2003
PMID: 12809605
Nishii I, Ogihara S, Kirk DL., Cell 113(6), 2003
PMID: 12809605
Differentiation of germinal and somatic cells in Volvox carteri.
Schmitt R., Curr Opin Microbiol 6(6), 2003
PMID: 14662357
Schmitt R., Curr Opin Microbiol 6(6), 2003
PMID: 14662357
Volvox carteri as a model for studying the genetic and cytological control of morphogenesis.
Kirk DL, Nishii I., Dev Growth Differ 43(6), 2001
PMID: 11737143
Kirk DL, Nishii I., Dev Growth Differ 43(6), 2001
PMID: 11737143
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 11082052
PubMed | Europe PMC
Suchen in