Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry.

Barsch A, Patschkowski T, Niehaus K (2004)
Funct Integr Genomics 4(4): 219-230.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
A metabolite analysis of the soil bacterium Sinorhizobium meliloti was established as a first step towards a better understanding of the symbiosis with its host plant Medicago truncatula. A crucial step was the development of fast harvesting and extraction methods for the bacterial metabolites because of rapid changes in their composition. S. meliloti 1021 cell cultures grown in minimal medium were harvested by centrifugation, filtration or immediate freezing in liquid nitrogen followed by a lyophilisation step. Bacteria were lysed mechanically in methanol and hydrophilic compounds were analysed after methoxymation and silylisation via GC-MS. The different compounds were identified by comparison with the NIST 98 database and available standards. From about 200 peaks in each chromatogram 65 compounds have been identified so far. A comparison of the different extraction methods giving the metabolite composition revealed clear changes in several amino acids and amino acid precursor pools. A principal component analysis (PCA) was able to distinguish S. meliloti cells grown on different carbon sources based on their metabolite profile. A comparison of the metabolite composition of a S. meliloti leucine auxotrophic mutant with the wild type revealed a marked accumulation of 2-isopropylmalate in the mutant. Interestingly, the accumulated metabolite is not the direct substrate of the mutated enzyme, 3-isopropylmalate dehydrogenase, but the substrate of isopropylmalate isomerase, which acts one step further upstream in the biosynthetic pathway of leucine. This finding further emphasises the importance of integrating metabolic data into post-genomic research.
Erscheinungsjahr
2004
Zeitschriftentitel
Funct Integr Genomics
Band
4
Ausgabe
4
Seite(n)
219-230
ISSN
1438-793X
eISSN
1438-7948
Page URI
https://pub.uni-bielefeld.de/record/1864111

Zitieren

Barsch A, Patschkowski T, Niehaus K. Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry. Funct Integr Genomics. 2004;4(4):219-230.
Barsch, A., Patschkowski, T., & Niehaus, K. (2004). Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry. Funct Integr Genomics, 4(4), 219-230. doi:10.1007/s10142-004-0117-y
Barsch, A., Patschkowski, T., and Niehaus, K. (2004). Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry. Funct Integr Genomics 4, 219-230.
Barsch, A., Patschkowski, T., & Niehaus, K., 2004. Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry. Funct Integr Genomics, 4(4), p 219-230.
A. Barsch, T. Patschkowski, and K. Niehaus, “Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry.”, Funct Integr Genomics, vol. 4, 2004, pp. 219-230.
Barsch, A., Patschkowski, T., Niehaus, K.: Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry. Funct Integr Genomics. 4, 219-230 (2004).
Barsch, A., Patschkowski, Thomas, and Niehaus, Karsten. “Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry.”. Funct Integr Genomics 4.4 (2004): 219-230.

30 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Metabolomic Technologies for Improving the Quality of Food: Practice and Promise.
Johanningsmeier SD, Harris GK, Klevorn CM., Annu Rev Food Sci Technol 7(), 2016
PMID: 26772413
A consolidated analysis of the physiologic and molecular responses induced under acid stress in the legume-symbiont model-soil bacterium Sinorhizobium meliloti.
Draghi WO, Del Papa MF, Hellweg C, Watt SA, Watt TF, Barsch A, Lozano MJ, Lagares A, Salas ME, López JL, Albicoro FJ, Nilsson JF, Torres Tejerizo GA, Luna MF, Pistorio M, Boiardi JL, Pühler A, Weidner S, Niehaus K, Lagares A., Sci Rep 6(), 2016
PMID: 27404346
A novel type of N-acetylglutamate synthase is involved in the first step of arginine biosynthesis in Corynebacterium glutamicum.
Petri K, Walter F, Persicke M, Rückert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24138314
Metabolite profiling of wheat flag leaf and grains during grain filling phase as affected by sulfur fertilisation
Zörb C, Steinfurth D, Gödde V, Niehaus K, Mühling KH., Funct Plant Biol 39(2), 2012
PMID: IND44676479
The perinatal transition of the circulating metabolome in a nonhuman primate.
Beckstrom AC, Tanya P, Humston EM, Snyder LR, Synovec RE, Juul SE., Pediatr Res 71(4 pt 1), 2012
PMID: 22391633
The interplay of proton, electron, and metabolite supply for photosynthetic H2 production in Chlamydomonas reinhardtii.
Doebbe A, Keck M, La Russa M, Mussgnug JH, Hankamer B, Tekçe E, Niehaus K, Kruse O., J Biol Chem 285(39), 2010
PMID: 20581114
Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants.
Pobigaylo N, Szymczak S, Nattkemper TW, Becker A., Mol Plant Microbe Interact 21(2), 2008
PMID: 18184066
Retention index thresholds for compound matching in GC-MS metabolite profiling.
Strehmel N, Hummel J, Erban A, Strassburg K, Kopka J., J Chromatogr B Analyt Technol Biomed Life Sci 871(2), 2008
PMID: 18501684
Mutational analysis of the Sinorhizobium meliloti short-chain dehydrogenase/reductase family reveals substantial contribution to symbiosis and catabolic diversity.
Jacob AI, Adham SA, Capstick DS, Clark SR, Spence T, Charles TC., Mol Plant Microbe Interact 21(7), 2008
PMID: 18533838
Comparative metabolomic analysis of Sinorhizobium sp. C4 during the degradation of phenanthrene.
Keum YS, Seo JS, Li QX, Kim JH., Appl Microbiol Biotechnol 80(5), 2008
PMID: 18668240
MeltDB: a software platform for the analysis and integration of metabolomics experiment data.
Neuweger H, Albaum SP, Dondrup M, Persicke M, Watt T, Niehaus K, Stoye J, Goesmann A., Bioinformatics 24(23), 2008
PMID: 18765459
Genomes of the symbiotic nitrogen-fixing bacteria of legumes.
MacLean AM, Finan TM, Sadowsky MJ., Plant Physiol 144(2), 2007
PMID: 17556525
Metabolomics: current state and evolving methodologies and tools.
Oldiges M, Lütz S, Pflug S, Schroer K, Stein N, Wiendahl C., Appl Microbiol Biotechnol 76(3), 2007
PMID: 17665194
Construction of a large signature-tagged mini-Tn5 transposon library and its application to mutagenesis of Sinorhizobium meliloti.
Pobigaylo N, Wetter D, Szymczak S, Schiller U, Kurtz S, Meyer F, Nattkemper TW, Becker A., Appl Environ Microbiol 72(6), 2006
PMID: 16751548
Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry.
Bajad SU, Lu W, Kimball EH, Yuan J, Peterson C, Rabinowitz JD., J Chromatogr A 1125(1), 2006
PMID: 16759663
Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations.
Barsch A, Tellström V, Patschkowski T, Küster H, Niehaus K., Mol Plant Microbe Interact 19(9), 2006
PMID: 16941904
An integrated approach to functional genomics: construction of a novel reporter gene fusion library for Sinorhizobium meliloti.
Cowie A, Cheng J, Sibley CD, Fong Y, Zaheer R, Patten CL, Morton RM, Golding GB, Finan TM., Appl Environ Microbiol 72(11), 2006
PMID: 16963549
Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation.
Bölling C, Fiehn O., Plant Physiol 139(4), 2005
PMID: 16306140

39 References

Daten bereitgestellt von Europe PubMed Central.

Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry.
Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L., Plant J. 23(1), 2000
PMID: 10929108
Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021.
Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F, Batut J, Boistard P, Becker A, Boutry M, Cadieu E, Dreano S, Gloux S, Godrie T, Goffeau A, Kahn D, Kiss E, Lelaure V, Masuy D, Pohl T, Portetelle D, Puhler A, Purnelle B, Ramsperger U, Renard C, Thebault P, Vandenbol M, Weidner S, Galibert F., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481430
Plant metabolomics: the missing link in functional genomics strategies.
Hall R, Beale M, Fiehn O, Hardy N, Sumner L, Bino R., Plant Cell 14(7), 2002
PMID: 12119365
A deeper investigation on carbohydrate cycling in Sinorhizobium meliloti.
Gosselin I, Wattraint O, Riboul D, Barbotin J, Portais J., FEBS Lett. 499(1-2), 2001
PMID: 11418109
Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria.
Wittmann C, Kromer JO, Kiefer P, Binz T, Heinzle E., Anal. Biochem. 327(1), 2004
PMID: 15033521
Metabolomics: quantification of intracellular metabolite dynamics.
Buchholz A, Hurlebaus J, Wandrey C, Takors R., Biomol. Eng. 19(1), 2002
PMID: 12103361
Metabolomics--the link between genotypes and phenotypes.
Fiehn O., Plant Mol. Biol. 48(1-2), 2002
PMID: 11860207
Metabolite profiling for plant functional genomics.
Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L., Nat. Biotechnol. 18(11), 2000
PMID: 11062433
Bacteroid formation in the Rhizobium-legume symbiosis.
Oke V, Long SR., Curr. Opin. Microbiol. 2(6), 1999
PMID: 10607628
Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems.
Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie A., Plant Cell 13(1), 2001
PMID: 11158526
Root nodulation and infection factors produced by rhizobial bacteria.
Spaink HP., Annu. Rev. Microbiol. 54(), 2000
PMID: 11018130
Plant metabolomics: large-scale phytochemistry in the functional genomics era.
Sumner LW, Mendes P, Dixon RA., Phytochemistry 62(6), 2003
PMID: 12590110
Metabolism of some polyols by Rhizobium meliloti.
Martinez De Drets G, Arias A., J. Bacteriol. 103(1), 1970
PMID: 5423374
Profiling phenolic metabolites in transgenic alfalfa modified in lignin biosynthesis.
Chen F, Duran AL, Blount JW, Sumner LW, Dixon RA., Phytochemistry 64(5), 2003
PMID: 14561519
Mechanism of gluconate synthesis in Rhizobium meliloti by using in vivo NMR.
Portais JC, Tavernier P, Besson I, Courtois J, Courtois B, Barbotin JN., FEBS Lett. 412(3), 1997
PMID: 9276451
Metabolic networks of Cucurbita maxima phloem.
Fiehn O., Phytochemistry 62(6), 2003
PMID: 12590115
Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants.
Grant SG, Jessee J, Bloom FR, Hanahan D., Proc. Natl. Acad. Sci. U.S.A. 87(12), 1990
PMID: 2162051
Expression monitoring by hybridization to high-density oligonucleotide arrays.
Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL., Nat. Biotechnol. 14(13), 1996
PMID: 9634850
The composite genome of the legume symbiont Sinorhizobium meliloti.
Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J., Science 293(5530), 2001
PMID: 11474104
Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels.
Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, Mortensen P, Shevchenko A, Boucherie H, Mann M., Proc. Natl. Acad. Sci. U.S.A. 93(25), 1996
PMID: 8962070
Metabolomics in systems biology.
Weckwerth W., Annu Rev Plant Biol 54(), 2003
PMID: 14503007
The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti.
Finan TM, Weidner S, Wong K, Buhrmester J, Chain P, Vorholter FJ, Hernandez-Lucas I, Becker A, Cowie A, Gouzy J, Golding B, Puhler A., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481431
Carbon and nitrogen metabolism in Rhizobium.
Poole P, Allaway D., Adv. Microb. Physiol. 43(), 2000
PMID: 10907556
Periplasmic PQQ-dependent glucose oxidation in free-living and symbiotic rhizobia.
Bernardelli CE, Luna MF, Galar ML, Boiardi JL., Curr. Microbiol. 42(5), 2001
PMID: 11400050
The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: genetic organization and properties of the encoded gene products.
Becker A, Ruberg S, Kuster H, Roxlau AA, Keller M, Ivashina T, Cheng HP, Walker GC, Puhler A., J. Bacteriol. 179(4), 1997
PMID: 9023225
Mutants of Rhizobium meliloti defective in succinate metabolism.
Finan TM, Oresnik I, Bottacin A., J. Bacteriol. 170(8), 1988
PMID: 2841284
Metabolomics spectral formatting, alignment and conversion tools (MSFACTs).
Duran AL, Yang J, Wang L, Sumner LW., Bioinformatics 19(17), 2003
PMID: 14630657
What makes the rhizobia-legume symbiosis so special?
Hirsch AM, Lum MR, Downie JA., Plant Physiol. 127(4), 2001
PMID: 11743092
Automated sampling device for monitoring intracellular metabolite dynamics.
Schaefer U, Boos W, Takors R, Weuster-Botz D., Anal. Biochem. 270(1), 1999
PMID: 10328769
Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid.
Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman RW, Kahn D, Kahn ML, Kalman S, Keating DH, Palm C, Peck MC, Surzycki R, Wells DH, Yeh KC, Davis RW, Federspiel NA, Long SR., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481432

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

PMID: 15372312
PubMed | Europe PMC

Suchen in

Google Scholar