Tate modules of universal p-divisible groups

Lau E (2010)
Compositio Mathematica 146(1): 220-232.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
Abstract / Bemerkung
A p-divisible group over a complete local domain determines a Galois representation on the Tate module of its generic fibre. We determine the image of this representation for the universal deformation in mixed characteristic of a bi-infinitesimal group and for the p-rank strata of the universal deformation in positive characteristic of an infinitesimal group. The method is a reduction to the known case of one-dimensional groups by a deformation argument based on properties of the stratification by Newton polygons.
Stichworte
p-divisible groups; Newton stratification; deformation theory; local p-adic monodromy
Erscheinungsjahr
2010
Zeitschriftentitel
Compositio Mathematica
Band
146
Ausgabe
1
Seite(n)
220-232
ISSN
0010-437X
Page URI
https://pub.uni-bielefeld.de/record/1796735

Zitieren

Lau E. Tate modules of universal p-divisible groups. Compositio Mathematica. 2010;146(1):220-232.
Lau, E. (2010). Tate modules of universal p-divisible groups. Compositio Mathematica, 146(1), 220-232. doi:10.1112/S0010437X09004242
Lau, E. (2010). Tate modules of universal p-divisible groups. Compositio Mathematica 146, 220-232.
Lau, E., 2010. Tate modules of universal p-divisible groups. Compositio Mathematica, 146(1), p 220-232.
E. Lau, “Tate modules of universal p-divisible groups”, Compositio Mathematica, vol. 146, 2010, pp. 220-232.
Lau, E.: Tate modules of universal p-divisible groups. Compositio Mathematica. 146, 220-232 (2010).
Lau, Eike. “Tate modules of universal p-divisible groups”. Compositio Mathematica 146.1 (2010): 220-232.