Coarse-grained simulations of membranes under tension

Neder J, West B, Nielaba P, Schmid F (2010)
JOURNAL OF CHEMICAL PHYSICS 132(11): 115101.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Neder, Joerg; West, BeateUniBi; Nielaba, Peter; Schmid, Friederike
Abstract / Bemerkung
We investigate the properties of membranes under tension by Monte Carlo simulations of a generic coarse-grained model for lipid bilayers. We give a comprising overview of the behavior of several membrane characteristics, such as the area per lipid, the monolayer overlap, the nematic order, and pressure profiles. Both the low-temperature regime, where the membranes are in a gel L-beta(') phase, and the high-temperature regime, where they are in the fluid L-alpha phase, are considered. In the L-beta(') state, the membrane is hardly influenced by tension. In the fluid state, high tensions lead to structural changes in the membrane, which result in different compressibility regimes. The ripple state P-beta('), which is found at tension zero in the transition regime between L-alpha and L-beta('), disappears under tension and gives way to an interdigitated phase. We also study the membrane fluctuations in the fluid phase. In the low-tension regime the data can be fitted nicely to a suitably extended elastic theory. At higher tensions the elastic fit consistently underestimates the strength of long-wavelength fluctuations. Finally, we investigate the influence of tension on the effective interaction between simple transmembrane inclusions and show that tension can be used to tune the hydrophobic mismatch interaction between membrane proteins.
Stichworte
biomechanics; cellular biophysics; elasticity; fluids; gels; biomembranes; Monte Carlo methods; lipid bilayers
Erscheinungsjahr
2010
Zeitschriftentitel
JOURNAL OF CHEMICAL PHYSICS
Band
132
Ausgabe
11
Art.-Nr.
115101
ISSN
0021-9606
Page URI
https://pub.uni-bielefeld.de/record/1796384

Zitieren

Neder J, West B, Nielaba P, Schmid F. Coarse-grained simulations of membranes under tension. JOURNAL OF CHEMICAL PHYSICS. 2010;132(11): 115101.
Neder, J., West, B., Nielaba, P., & Schmid, F. (2010). Coarse-grained simulations of membranes under tension. JOURNAL OF CHEMICAL PHYSICS, 132(11), 115101. https://doi.org/10.1063/1.3352583
Neder, Joerg, West, Beate, Nielaba, Peter, and Schmid, Friederike. 2010. “Coarse-grained simulations of membranes under tension”. JOURNAL OF CHEMICAL PHYSICS 132 (11): 115101.
Neder, J., West, B., Nielaba, P., and Schmid, F. (2010). Coarse-grained simulations of membranes under tension. JOURNAL OF CHEMICAL PHYSICS 132:115101.
Neder, J., et al., 2010. Coarse-grained simulations of membranes under tension. JOURNAL OF CHEMICAL PHYSICS, 132(11): 115101.
J. Neder, et al., “Coarse-grained simulations of membranes under tension”, JOURNAL OF CHEMICAL PHYSICS, vol. 132, 2010, : 115101.
Neder, J., West, B., Nielaba, P., Schmid, F.: Coarse-grained simulations of membranes under tension. JOURNAL OF CHEMICAL PHYSICS. 132, : 115101 (2010).
Neder, Joerg, West, Beate, Nielaba, Peter, and Schmid, Friederike. “Coarse-grained simulations of membranes under tension”. JOURNAL OF CHEMICAL PHYSICS 132.11 (2010): 115101.

17 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Distribution of mechanical stress in the Escherichia coli cell envelope.
Hwang H, Paracini N, Parks JM, Lakey JH, Gumbart JC., Biochim Biophys Acta Biomembr 1860(12), 2018
PMID: 30278180
A Cellular Model of Shear-Induced Hemolysis.
Sohrabi S, Liu Y., Artif Organs 41(9), 2017
PMID: 28044355
Molecular dynamics simulations of heterogeneous cell membranes in response to uniaxial membrane stretches at high loading rates.
Zhang L, Zhang Z, Jasa J, Li D, Cleveland RO, Negahban M, Jérusalem A., Sci Rep 7(1), 2017
PMID: 28814791
Molecular dynamics simulations of lipid membranes with lateral force: rupture and dynamic properties.
Xie JY, Ding GH, Karttunen M., Biochim Biophys Acta 1838(3), 2014
PMID: 24374317
Poisson's Ratio and Young's Modulus of Lipid Bilayers in Different Phases.
Jadidi T, Seyyed-Allaei H, Tabar MR, Mashaghi A., Front Bioeng Biotechnol 2(), 2014
PMID: 25152882
Monolayer curvature stabilizes nanoscale raft domains in mixed lipid bilayers.
Meinhardt S, Vink RL, Schmid F., Proc Natl Acad Sci U S A 110(12), 2013
PMID: 23487780
Thermal fluctuations in shape, thickness, and molecular orientation in lipid bilayers. II. Finite surface tensions.
Watson MC, Morriss-Andrews A, Welch PM, Brown FL., J Chem Phys 139(8), 2013
PMID: 24007028
Thermal fluctuations and bending rigidity of bilayer membranes.
Tarazona P, Chacón E, Bresme F., J Chem Phys 139(9), 2013
PMID: 24028128
Forming transmembrane channels using end-functionalized nanotubes.
Dutt M, Kuksenok O, Little SR, Balazs AC., Nanoscale 3(1), 2011
PMID: 20976358
Pore-spanning lipid membrane under indentation by a probe tip: a molecular dynamics simulation study.
Huang CH, Hsiao PY, Tseng FG, Fan SK, Fu CC, Pan RL., Langmuir 27(19), 2011
PMID: 21859109
Thermal fluctuations in shape, thickness, and molecular orientation in lipid bilayers.
Watson MC, Penev ES, Welch PM, Brown FL., J Chem Phys 135(24), 2011
PMID: 22225175

57 References

Daten bereitgestellt von Europe PubMed Central.


Berg, 2002

AUTHOR UNKNOWN, 0
Tension-induced fusion of bilayer membranes and vesicles.
Shillcock JC, Lipowsky R., Nat Mater 4(3), 2005
PMID: 15711550
Pathway of membrane fusion with two tension-dependent energy barriers.
Grafmuller A, Shillcock J, Lipowsky R., Phys. Rev. Lett. 98(21), 2007
PMID: 17677811

Voth, 2009

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Mesoscopic membrane physics: concepts, simulations, and selected applications.
Deserno M., Macromol Rapid Commun 30(9-10), 2009
PMID: 21706661
Toy amphiphiles on the computer: What can we learn from generic models?
Schmid F., Macromol Rapid Commun 30(9-10), 2009
PMID: 21706660

AUTHOR UNKNOWN, 0
Structure of symmetric and asymmetric "ripple" phases in lipid bilayers.
Lenz O, Schmid F., Phys. Rev. Lett. 98(5), 2007
PMID: 17358906

AUTHOR UNKNOWN, 0
Membrane-protein interactions in a generic coarse-grained model for lipid bilayers.
West B, Brown FL, Schmid F., Biophys. J. 96(1), 2009
PMID: 18835907
Simulation of pore formation in lipid bilayers by mechanical stress and electric fields.
Tieleman DP, Leontiadou H, Mark AE, Marrink SJ., J. Am. Chem. Soc. 125(21), 2003
PMID: 12785774
Molecular dynamics simulations of hydrophilic pores in lipid bilayers.
Leontiadou H, Mark AE, Marrink SJ., Biophys. J. 86(4), 2004
PMID: 15041656
Lipid bilayer pressure profiles and mechanosensitive channel gating.
Gullingsrud J, Schulten K., Biophys. J. 86(6), 2004
PMID: 15189849

AUTHOR UNKNOWN, 0

Mouritsen, 2005
The fusion of membranes and vesicles: pathway and energy barriers from dissipative particle dynamics.
Grafmuller A, Shillcock J, Lipowsky R., Biophys. J. 96(7), 2009
PMID: 19348749

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Implicit solvent simulation models for biomembranes.
Brannigan G, Lin LC, Brown FL., Eur. Biophys. J. 35(2), 2005
PMID: 16187129

AUTHOR UNKNOWN, 0
Diffusion on ruffled membrane surfaces.
Naji A, Brown FL., J Chem Phys 126(23), 2007
PMID: 17600446
Hybrid simulations of lateral diffusion in fluctuating membranes.
Reister-Gottfried E, Leitenberger SM, Seifert U., Phys Rev E Stat Nonlin Soft Matter Phys 75(1 Pt 1), 2007
PMID: 17358185

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Rowlinson, 1982

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
The effect of thermal fluctuations on Schulman area elasticity.
Farago O, Pincus P., Eur Phys J E Soft Matter 11(4), 2003
PMID: 15011041
Surface tension in bilayer membranes with fixed projected area.
Imparato A., J Chem Phys 124(15), 2006
PMID: 16674258

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Calculation of free energy through successive umbrella sampling.
Virnau P, Muller M., J Chem Phys 120(23), 2004
PMID: 15268122
Molecular simulations of lipid-mediated protein-protein interactions.
de Meyer FJ, Venturoli M, Smit B., Biophys. J. 95(4), 2008
PMID: 18487292
Cluster formation of transmembrane proteins due to hydrophobic mismatching.
Schmidt U, Guigas G, Weiss M., Phys. Rev. Lett. 101(12), 2008
PMID: 18851417

AUTHOR UNKNOWN, 0
Thermoelasticity of large lecithin bilayer vesicles.
Kwok R, Evans E., Biophys. J. 35(3), 1981
PMID: 7272454
Effect of chain length and unsaturation on elasticity of lipid bilayers.
Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E., Biophys. J. 79(1), 2000
PMID: 10866959

AUTHOR UNKNOWN, 0
Dynamic tension spectroscopy and strength of biomembranes.
Evans E, Heinrich V, Ludwig F, Rawicz W., Biophys. J. 85(4), 2003
PMID: 14507698
Diffusion in supported lipid bilayers: influence of substrate and preparation technique on the internal dynamics.
Scomparin C, Lecuyer S, Ferreira M, Charitat T, Tinland B., Eur Phys J E Soft Matter 28(2), 2009
PMID: 19101741
VMD: visual molecular dynamics.
Humphrey W, Dalke A, Schulten K., J Mol Graph 14(1), 1996
PMID: 8744570
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 20331316
PubMed | Europe PMC

arXiv: 1002.4089

Suchen in

Google Scholar