Ultrathin conductive carbon nanomembranes as support films for structural analysis of biological specimens

Rhinow D, Vonck J, Schranz M, Beyer A, Gölzhäuser A, Hampp N (2010)
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 12(17): 4345-4350.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ;
Abstract / Bemerkung
Ultrathin carbon nanomembranes (CNM) have been tested as supports for both cryogenic high-resolution transmission electron microscopy (cryo-EM) as well as atomic force microscopy (AFM) of biological specimens. Purple membrane ( PM) from Halobacterium salinarum, a 2-D crystalline monolayer of bacteriorhodopsin ( BR) and lipids, was used for this study. Due to their low thickness of just 1.6 nm CNM add virtually no phase contrast to the transmission pattern. This is an important advantage over commonly used amorphous carbon support films which become instable below a thickness of similar to 20 nm. Moreover, the electrical conductivity of CNM can be tuned leading to conductive carbon nanomembranes (cCNM). cCNM support films were analyzed for the first time and were found to ideally meet all requirements of cryo-EM of insulating biological samples. A projection map of PM on cCNM at 4 angstrom resolution has been calculated which proves that the structural integrity of biological samples is preserved up to the high-resolution range. CNM have also proven to be suitable supports for AFM analysis of biological samples. PM on CNM was imaged at molecular resolution and single molecule force spectra were recorded which show no differences compared to force spectra of PM obtained with other substrates. This is the first demonstration of a support film material which meets the requirements of both, cryo-EM and AFM, thus enabling comparative structural studies of biomolecular samples with unchanged sample-substrate interactions. Beyond high-resolution cryo-EM of biological samples, cCNM are attractive new substrates for other biophysical techniques which require conductive supports, i.e. scanning tunneling microscopy (STM) and electrostatic force microscopy (EFM).
Erscheinungsjahr
Zeitschriftentitel
PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Band
12
Ausgabe
17
Seite(n)
4345-4350
ISSN
eISSN
PUB-ID

Zitieren

Rhinow D, Vonck J, Schranz M, Beyer A, Gölzhäuser A, Hampp N. Ultrathin conductive carbon nanomembranes as support films for structural analysis of biological specimens. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 2010;12(17):4345-4350.
Rhinow, D., Vonck, J., Schranz, M., Beyer, A., Gölzhäuser, A., & Hampp, N. (2010). Ultrathin conductive carbon nanomembranes as support films for structural analysis of biological specimens. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 12(17), 4345-4350. doi:10.1039/b923756a
Rhinow, D., Vonck, J., Schranz, M., Beyer, A., Gölzhäuser, A., and Hampp, N. (2010). Ultrathin conductive carbon nanomembranes as support films for structural analysis of biological specimens. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 12, 4345-4350.
Rhinow, D., et al., 2010. Ultrathin conductive carbon nanomembranes as support films for structural analysis of biological specimens. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 12(17), p 4345-4350.
D. Rhinow, et al., “Ultrathin conductive carbon nanomembranes as support films for structural analysis of biological specimens”, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 12, 2010, pp. 4345-4350.
Rhinow, D., Vonck, J., Schranz, M., Beyer, A., Gölzhäuser, A., Hampp, N.: Ultrathin conductive carbon nanomembranes as support films for structural analysis of biological specimens. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 12, 4345-4350 (2010).
Rhinow, Daniel, Vonck, Janet, Schranz, Michael, Beyer, André, Gölzhäuser, Armin, and Hampp, Norbert. “Ultrathin conductive carbon nanomembranes as support films for structural analysis of biological specimens”. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 12.17 (2010): 4345-4350.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Towards an optimum design for thin film phase plates.
Rhinow D., Ultramicroscopy 160(), 2016
PMID: 26397752
Ultraflexible, freestanding nanomembranes based on poly(ethylene glycol).
Meyerbröker N, Zharnikov M., Adv Mater 26(20), 2014
PMID: 24677589
Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes.
Rhinow D, Büenfeld M, Weber NE, Beyer A, Gölzhäuser A, Kühlbrandt W, Hampp N, Turchanin A., Ultramicroscopy 111(5), 2011
PMID: 21329648

39 References

Daten bereitgestellt von Europe PubMed Central.

Macromolecular electron microscopy in the era of structural genomics.
Baumeister W, Steven AC., Trends Biochem. Sci. 25(12), 2000
PMID: 11116190

Bartesaghi, Curr. Opin. Struct. Biol. 19(), 2000
Probing the macromolecular organization of cells by electron tomography.
Hoenger A, McIntosh JR., Curr. Opin. Cell Biol. 21(1), 2009
PMID: 19185480
Two-dimensional crystallization of membrane proteins.
Kuhlbrandt W., Q. Rev. Biophys. 25(1), 1992
PMID: 1589568
Three-dimensional model of purple membrane obtained by electron microscopy.
Henderson R, Unwin PN., Nature 257(5521), 1975
PMID: 1161000
Atomic model of plant light-harvesting complex by electron crystallography.
Kuhlbrandt W, Wang DN, Fujiyoshi Y., Nature 367(6464), 1994
PMID: 8107845
Electron-crystallographic refinement of the structure of bacteriorhodopsin.
Grigorieff N, Ceska TA, Downing KH, Baldwin JM, Henderson R., J. Mol. Biol. 259(3), 1996
PMID: 8676377
Lipid-protein interactions in double-layered two-dimensional AQP0 crystals.
Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y, Harrison SC, Walz T., Nature 438(7068), 2005
PMID: 16319884

Walz, Annu. Rev. Biophys. 38(), 2009

O'Keefe, Ultramicroscopy 89(), 2000

Kisielowski, Microsc. Microanal. 14(), 2008
Atomic-resolution imaging with a sub-50-pm electron probe.
Erni R, Rossell MD, Kisielowski C, Dahmen U., Phys. Rev. Lett. 102(9), 2009
PMID: 19392535
The structure of suspended graphene sheets.
Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S., Nature 446(7131), 2007
PMID: 17330039
Imaging and dynamics of light atoms and molecules on graphene.
Meyer JC, Girit CO, Crommie MF, Zettl A., Nature 454(7202), 2008
PMID: 18633414

Eck, Adv. Mater. 17(), 2005
Fully cross-linked and chemically patterned self-assembled monolayers.
Beyer A, Godt A, Amin I, Nottbohm CT, Schmidt C, Zhao J, Golzhauser A., Phys Chem Chem Phys 10(48), 2008
PMID: 19060967
Novel carbon nanosheets as support for ultrahigh-resolution structural analysis of nanoparticles.
Nottbohm CT, Beyer A, Sologubenko AS, Ennen I, Hutten A, Rosner H, Eck W, Mayer J, Golzhauser A., Ultramicroscopy 108(9), 2008
PMID: 18406532
Controlled three-dimensional immobilization of biomolecules on chemically patterned surfaces.
Biebricher A, Paul A, Tinnefeld P, Golzhauser A, Sauer M., J. Biotechnol. 112(1-2), 2004
PMID: 15288945

Turchanin, Adv. Mater. 20(), 2008

Turchanin, Adv. Mater. 21(), 2009
MRC image processing programs.
Crowther RA, Henderson R, Smith JM., J. Struct. Biol. 116(1), 1996
PMID: 8742717

Collaborative, Acta Crystallogr., Sect. D: Biol. Crystallogr. 50(), 1994
Stability of bacteriorhodopsin alpha-helices and loops analyzed by single-molecule force spectroscopy.
Muller DJ, Kessler M, Oesterhelt F, Moller C, Oesterhelt D, Gaub H., Biophys. J. 83(6), 2002
PMID: 12496125
Entropic elasticity of lambda-phage DNA.
Bustamante C, Marko JF, Siggia ED, Smith S., Science 265(5178), 1994
PMID: 8079175

Markoand, Macromolecules 28(), 1995
Reversible unfolding of individual titin immunoglobulin domains by AFM.
Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE., Science 276(5315), 1997
PMID: 9148804

Henderson, Ultramicroscopy 19(), 1986
Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy.
Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH., J. Mol. Biol. 213(4), 1990
PMID: 2359127
Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy.
Muller DJ, Schabert FA, Buldt G, Engel A., Biophys. J. 68(5), 1995
PMID: 7612811
Adsorption of biological molecules to a solid support for scanning probe microscopy.
Muller DJ, Amrein M, Engel A., J. Struct. Biol. 119(2), 1997
PMID: 9245758
Tapping-mode atomic force microscopy produces faithful high-resolution images of protein surfaces.
Moller C, Allen M, Elings V, Engel A, Muller DJ., Biophys. J. 77(2), 1999
PMID: 10423460
Unfolding pathways of individual bacteriorhodopsins.
Oesterhelt F, Oesterhelt D, Pfeiffer M, Engel A, Gaub HE, Muller DJ., Science 288(5463), 2000
PMID: 10753119
Stability of bacteriorhodopsin alpha-helices and loops analyzed by single-molecule force spectroscopy.
Muller DJ, Kessler M, Oesterhelt F, Moller C, Oesterhelt D, Gaub H., Biophys. J. 83(6), 2002
PMID: 12496125

Schranz, Langmuir 23(), 2007

Fischer, Soft Matter 3(), 2007

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 20407705
PubMed | Europe PMC

Suchen in

Google Scholar