Elliptic and parabolic equations for measures

Bogachev VI, Krylov NV, Röckner M (2009)
Russian Mathematical Surveys 64(6): 973-1078.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ;
Abstract / Bemerkung
This article gives a detailed account of recent investigations of weak elliptic and parabolic equations for measures with unbounded and possibly singular coefficients. The existence and differentiability of densities are studied, and lower and upper bounds for them are discussed. Semi-groups associated with second-order elliptic operators acting in L-p-spaces with respect to infinitesimally invariant measures are investigated.
Erscheinungsjahr
Zeitschriftentitel
Russian Mathematical Surveys
Band
64
Ausgabe
6
Seite(n)
973-1078
ISSN
PUB-ID

Zitieren

Bogachev VI, Krylov NV, Röckner M. Elliptic and parabolic equations for measures. Russian Mathematical Surveys . 2009;64(6):973-1078.
Bogachev, V. I., Krylov, N. V., & Röckner, M. (2009). Elliptic and parabolic equations for measures. Russian Mathematical Surveys , 64(6), 973-1078. doi:10.1070/RM2009v064n06ABEH004652
Bogachev, V. I., Krylov, N. V., and Röckner, M. (2009). Elliptic and parabolic equations for measures. Russian Mathematical Surveys 64, 973-1078.
Bogachev, V.I., Krylov, N.V., & Röckner, M., 2009. Elliptic and parabolic equations for measures. Russian Mathematical Surveys , 64(6), p 973-1078.
V.I. Bogachev, N.V. Krylov, and M. Röckner, “Elliptic and parabolic equations for measures”, Russian Mathematical Surveys , vol. 64, 2009, pp. 973-1078.
Bogachev, V.I., Krylov, N.V., Röckner, M.: Elliptic and parabolic equations for measures. Russian Mathematical Surveys . 64, 973-1078 (2009).
Bogachev, Vladimir I., Krylov, Nikolai V., and Röckner, Michael. “Elliptic and parabolic equations for measures”. Russian Mathematical Surveys 64.6 (2009): 973-1078.