A syntax of hoverfly flight prototypes

Geurten B, Kern R, Braun E, Egelhaaf M (2010)
Journal of Experimental Biology 213(14): 2461-2475.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
Hoverflies such as Eristalis tenax Linnaeus are known for their distinctive flight style. They can hover on the same spot for several seconds and then burst into movement in apparently any possible direction. In order to determine a quantitative and structured description of complex flight manoeuvres, we searched for a set of repeatedly occurring prototypical movements (PMs) and a set of rules for their ordering. PMs were identified by applying clustering algorithms to the translational and rotational velocities of the body of Eristalis during free-flight sequences. This approach led to nine stable and reliable PMs, and thus provided a tremendous reduction in the complexity of behavioural description. This set of PMs together with the probabilities of transition between them constitute a syntactical description of flight behaviour. The PMs themselves can be roughly segregated into fast rotational turns (saccades) and a variety of distinct translational movements (intersaccadic intervals). We interpret this segregation as reflecting an active sensing strategy which facilitates the extraction of spatial information from retinal image displacements. Detailed analysis of saccades shows that they are performed around all rotational axes individually and in all possible combinations. We found the probability of occurrence of a given saccade type to depend on parameters such as the angle between the long body axis and the direction of flight.
hoverfly; clustering; syntax; flight behaviour; movement segregation; saccades
Journal of Experimental Biology
Page URI


Geurten B, Kern R, Braun E, Egelhaaf M. A syntax of hoverfly flight prototypes. Journal of Experimental Biology. 2010;213(14):2461-2475.
Geurten, B., Kern, R., Braun, E., & Egelhaaf, M. (2010). A syntax of hoverfly flight prototypes. Journal of Experimental Biology, 213(14), 2461-2475. https://doi.org/10.1242/jeb.036079
Geurten, B., Kern, R., Braun, E., and Egelhaaf, M. (2010). A syntax of hoverfly flight prototypes. Journal of Experimental Biology 213, 2461-2475.
Geurten, B., et al., 2010. A syntax of hoverfly flight prototypes. Journal of Experimental Biology, 213(14), p 2461-2475.
B. Geurten, et al., “A syntax of hoverfly flight prototypes”, Journal of Experimental Biology, vol. 213, 2010, pp. 2461-2475.
Geurten, B., Kern, R., Braun, E., Egelhaaf, M.: A syntax of hoverfly flight prototypes. Journal of Experimental Biology. 213, 2461-2475 (2010).
Geurten, Bart, Kern, Roland, Braun, Elke, and Egelhaaf, Martin. “A syntax of hoverfly flight prototypes”. Journal of Experimental Biology 213.14 (2010): 2461-2475.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

31 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Image statistics of the environment surrounding freely behaving hoverflies.
Dyakova O, Müller MM, Egelhaaf M, Nordström K., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 205(3), 2019
PMID: 30937518
Coriolis and centrifugal forces drive haltere deformations and influence spike timing.
Mohren TL, Daniel TL, Eberle AL, Reinhall PG, Fox JL., J R Soc Interface 16(153), 2019
PMID: 31014202
Sensory Flow as a Basis for a Novel Distance Cue in Freely Behaving Electric Fish.
Hofmann V, Sanguinetti-Scheck JI, Gómez-Sena L, Engelmann J., J Neurosci 37(2), 2017
PMID: 28077710
Saccadic movement strategy in a semiaquatic species - the harbour seal (Phoca vitulina).
Geurten BRH, Niesterok B, Dehnhardt G, Hanke FD., J Exp Biol 220(pt 8), 2017
PMID: 28167803
Neuroligins Nlg2 and Nlg4 Affect Social Behavior in Drosophila melanogaster.
Corthals K, Heukamp AS, Kossen R, Großhennig I, Hahn N, Gras H, Göpfert MC, Heinrich R, Geurten BRH., Front Psychiatry 8(), 2017
PMID: 28740469
Dynamic structure of locomotor behavior in walking fruit flies.
Katsov AY, Freifeld L, Horowitz M, Kuehn S, Clandinin TR., Elife 6(), 2017
PMID: 28742018
Hoverfly locomotor activity is resilient to external influence and intrinsic factors.
Thyselius M, Nordström K., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 202(1), 2016
PMID: 26610330
Saccadic Movement Strategy in Common Cuttlefish (Sepia officinalis).
Helmer D, Geurten BR, Dehnhardt G, Hanke FD., Front Physiol 7(), 2016
PMID: 28105017
Independently controlled wing stroke patterns in the fruit fly Drosophila melanogaster.
Chakraborty S, Bartussek J, Fry SN, Zapotocky M., PLoS One 10(2), 2015
PMID: 25710715
Spatio-temporal dynamics of impulse responses to figure motion in optic flow neurons.
Lee YJ, Jönsson HO, Nordström K., PLoS One 10(5), 2015
PMID: 25955416
Motor patterns during active electrosensory acquisition.
Hofmann V, Geurten BR, Sanguinetti-Scheck JI, Gómez-Sena L, Engelmann J., Front Behav Neurosci 8(), 2014
PMID: 24904337
Visual motion-sensitive neurons in the bumblebee brain convey information about landmarks during a navigational task.
Mertes M, Dittmar L, Egelhaaf M, Boeddeker N., Front Behav Neurosci 8(), 2014
PMID: 25309374
Saccadic body turns in walking Drosophila.
Geurten BR, Jähde P, Corthals K, Göpfert MC., Front Behav Neurosci 8(), 2014
PMID: 25386124
Discriminating external and internal causes for heading changes in freely flying Drosophila.
Censi A, Straw AD, Sayaman RW, Murray RM, Dickinson MH., PLoS Comput Biol 9(2), 2013
PMID: 23468601
Mapping and cracking sensorimotor circuits in genetic model organisms.
Clark DA, Freifeld L, Clandinin TR., Neuron 78(4), 2013
PMID: 23719159
Operation of the alula as an indicator of gear change in hoverflies.
Walker SM, Thomas AL, Taylor GK., J R Soc Interface 9(71), 2012
PMID: 22072452
Texture dependence of motion sensing and free flight behavior in blowflies.
Lindemann JP, Egelhaaf M., Front Behav Neurosci 6(), 2012
PMID: 23335890
Neural specializations for small target detection in insects.
Nordström K., Curr Opin Neurobiol 22(2), 2012
PMID: 22244741
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 20581276
PubMed | Europe PMC

Suchen in

Google Scholar