Signal relay from sensory rhodopsin I to the cognate transducer HtrI: Assessing the critical change in hydrogen-bonding between Tyr-210 and Asn-53

Radu I, Budyak IL, Hoomann T, Kim YJ, Engelhard M, Labahn J, Bueldt G, Heberle J, Schlesinger R (2010)
BIOPHYSICAL CHEMISTRY 150(1-3): 23-28.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Radu, Ionela; Budyak, Ivan L.; Hoomann, Torben; Kim, Young Jun; Engelhard, Martin; Labahn, Joerg; Bueldt, Georg; Heberle, Joachim; Schlesinger, Ramona
Abstract / Bemerkung
Sensory rhodopsin I (SRI) from Halobacterium salinarum mediates both positive and negative phototaxis in a light-dependent manner. SRI photoactivation elicits extensive structural changes which are transmitted to the cognate transducer (HtrI). The atomic structure of the SRI-HtrI complex has not been solved yet and, therefore, details on the interaction which define the binding site between receptor and transducer are missing. The related complex SRII-HtrII from Natronobacterium pharaonis exhibits a hydrogen bond between the receptor Y199 and transducer N54. This bond has been suggested to mediate signal relay in the SRII-HtrII system. Our previous results on the SRI-HtrI complex indicated that HtrI N53 forms a hydrogen bond at the cytoplasm-proximity of the membrane. Here, based on kinetic and spectroscopic data, we demonstrate that Y210 of SRI is functionally significant for the signal relay in the SRI-HtrI complex. Each of the tyrosine residues Y197, Y208, Y210 and Y213 were conservatively exchanged for phenylalanine but only the Y210F mutation led to the disappearance of the infrared band of the terminal amide C=O of N53. From this FT-IR spectroscopic result, we conclude that Y210 of SRI and N53 of HtrI interact via a hydrogen bond which is crucial for the signal transfer from the light receptor to the transducer. (C) 2010 Elsevier B.V. All rights reserved.
Stichworte
Signal transduction; Titration calorimetry; Isothermal; FT-IR difference; Signalling state; Phototaxis; spectroscopy; Bacteriorhodopsin
Erscheinungsjahr
2010
Zeitschriftentitel
BIOPHYSICAL CHEMISTRY
Band
150
Ausgabe
1-3
Seite(n)
23-28
ISSN
0301-4622
Page URI
https://pub.uni-bielefeld.de/record/1795049

Zitieren

Radu I, Budyak IL, Hoomann T, et al. Signal relay from sensory rhodopsin I to the cognate transducer HtrI: Assessing the critical change in hydrogen-bonding between Tyr-210 and Asn-53. BIOPHYSICAL CHEMISTRY. 2010;150(1-3):23-28.
Radu, I., Budyak, I. L., Hoomann, T., Kim, Y. J., Engelhard, M., Labahn, J., Bueldt, G., et al. (2010). Signal relay from sensory rhodopsin I to the cognate transducer HtrI: Assessing the critical change in hydrogen-bonding between Tyr-210 and Asn-53. BIOPHYSICAL CHEMISTRY, 150(1-3), 23-28. https://doi.org/10.1016/j.bpc.2010.02.017
Radu, Ionela, Budyak, Ivan L., Hoomann, Torben, Kim, Young Jun, Engelhard, Martin, Labahn, Joerg, Bueldt, Georg, Heberle, Joachim, and Schlesinger, Ramona. 2010. “Signal relay from sensory rhodopsin I to the cognate transducer HtrI: Assessing the critical change in hydrogen-bonding between Tyr-210 and Asn-53”. BIOPHYSICAL CHEMISTRY 150 (1-3): 23-28.
Radu, I., Budyak, I. L., Hoomann, T., Kim, Y. J., Engelhard, M., Labahn, J., Bueldt, G., Heberle, J., and Schlesinger, R. (2010). Signal relay from sensory rhodopsin I to the cognate transducer HtrI: Assessing the critical change in hydrogen-bonding between Tyr-210 and Asn-53. BIOPHYSICAL CHEMISTRY 150, 23-28.
Radu, I., et al., 2010. Signal relay from sensory rhodopsin I to the cognate transducer HtrI: Assessing the critical change in hydrogen-bonding between Tyr-210 and Asn-53. BIOPHYSICAL CHEMISTRY, 150(1-3), p 23-28.
I. Radu, et al., “Signal relay from sensory rhodopsin I to the cognate transducer HtrI: Assessing the critical change in hydrogen-bonding between Tyr-210 and Asn-53”, BIOPHYSICAL CHEMISTRY, vol. 150, 2010, pp. 23-28.
Radu, I., Budyak, I.L., Hoomann, T., Kim, Y.J., Engelhard, M., Labahn, J., Bueldt, G., Heberle, J., Schlesinger, R.: Signal relay from sensory rhodopsin I to the cognate transducer HtrI: Assessing the critical change in hydrogen-bonding between Tyr-210 and Asn-53. BIOPHYSICAL CHEMISTRY. 150, 23-28 (2010).
Radu, Ionela, Budyak, Ivan L., Hoomann, Torben, Kim, Young Jun, Engelhard, Martin, Labahn, Joerg, Bueldt, Georg, Heberle, Joachim, and Schlesinger, Ramona. “Signal relay from sensory rhodopsin I to the cognate transducer HtrI: Assessing the critical change in hydrogen-bonding between Tyr-210 and Asn-53”. BIOPHYSICAL CHEMISTRY 150.1-3 (2010): 23-28.

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

32 References

Daten bereitgestellt von Europe PubMed Central.

Molecular mechanism of photosignaling by archaeal sensory rhodopsins.
Hoff WD, Jung KH, Spudich JL., Annu Rev Biophys Biomol Struct 26(), 1997
PMID: 9241419
Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex.
Gordeliy VI, Labahn J, Moukhametzianov R, Efremov R, Granzin J, Schlesinger R, Buldt G, Savopol T, Scheidig AJ, Klare JP, Engelhard M., Nature 419(6906), 2002
PMID: 12368857
Structural insights into the early steps of receptor-transducer signal transfer in archaeal phototaxis.
Wegener AA, Klare JP, Engelhard M, Steinhoff HJ., EMBO J. 20(19), 2001
PMID: 11574462
Phototaxis, chemotaxis and the missing link.
Oprian DD., Trends Biochem. Sci. 28(4), 2003
PMID: 12713898
The photochemical reactions of sensory rhodopsin I are altered by its transducer.
Spudich EN, Spudich JL., J. Biol. Chem. 268(22), 1993
PMID: 8344892
Development of the signal in sensory rhodopsin and its transfer to the cognate transducer.
Moukhametzianov R, Klare JP, Efremov R, Baeken C, Goppner A, Labahn J, Engelhard M, Buldt G, Gordeliy VI., Nature 440(7080), 2006
PMID: 16452929
FT-IR difference spectroscopy elucidates crucial interactions of sensory rhodopsin I with the cognate transducer HtrI.
Mironova OS, Budyak IL, Buldt G, Schlesinger R, Heberle J., Biochemistry 46(33), 2007
PMID: 17655327
Functional expression of His-tagged sensory rhodopsin I in Escherichia coli.
Schmies G, Chizhov I, Engelhard M., FEBS Lett. 466(1), 2000
PMID: 10648814
Rapid high-yield purification and liposome reconstitution of polyhistidine-tagged sensory rhodopsin I.
Krebs MP, Spudich EN, Spudich JL., Protein Expr. Purif. 6(6), 1995
PMID: 8746630
Functional characterization of sensory rhodopsin II from Halobacterium salinarum expressed in Escherichia coli.
Mironova OS, Efremov RG, Person B, Heberle J, Budyak IL, Buldt G, Schlesinger R., FEBS Lett. 579(14), 2005
PMID: 15919078
Probing the sensory rhodopsin II binding domain of its cognate transducer by calorimetry and electrophysiology.
Hippler-Mreyen S, Klare JP, Wegener AA, Seidel R, Herrmann C, Schmies G, Nagel G, Bamberg E, Engelhard M., J. Mol. Biol. 330(5), 2003
PMID: 12860139
Conformational changes of channelrhodopsin-2.
Radu I, Bamann C, Nack M, Nagel G, Bamberg E, Heberle J., J. Am. Chem. Soc. 131(21), 2009
PMID: 19422231
Primary structure of sensory rhodopsin I, a prokaryotic photoreceptor.
Blanck A, Oesterhelt D, Ferrando E, Schegk ES, Lottspeich F., EMBO J. 8(13), 1989
PMID: 2591367
Deletion mapping of the sites on the HtrI transducer for sensory rhodopsin I interaction.
Perazzona B, Spudich EN, Spudich JL., J. Bacteriol. 178(22), 1996
PMID: 8932303

AUTHOR UNKNOWN, 0
Vibrational spectroscopy as a tool for probing protein function.
Vogel R, Siebert F., Curr Opin Chem Biol 4(5), 2000
PMID: 11006538
Proteins in action monitored by time-resolved FTIR spectroscopy
Kötting, Chem.Phys. Chem. 6(), 2005
The molecular mechanism of membrane proteins probed by evanescent infrared waves
Nyquist, Chem. Biochem. 5(), 2004
Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins.
Radu I, Schleeger M, Bolwien C, Heberle J., Photochem. Photobiol. Sci. 8(11), 2009
PMID: 19862409
Structural changes of sensory rhodopsin I and its transducer protein are dependent on the protonated state of Asp76.
Furutani Y, Takahashi H, Sasaki J, Sudo Y, Spudich JL, Kandori H., Biochemistry 47(9), 2008
PMID: 18220358
Asp76 is the Schiff base counterion and proton acceptor in the proton-translocating form of sensory rhodopsin I.
Rath P, Spudich E, Neal DD, Spudich JL, Rothschild KJ., Biochemistry 35(21), 1996
PMID: 8639619
What vibrations tell us about proteins.
Barth A, Zscherp C., Q. Rev. Biophys. 35(4), 2002
PMID: 12621861
Photoactivation perturbs the membrane-embedded contacts between sensory rhodopsin II and its transducer.
Bergo VB, Spudich EN, Rothschild KJ, Spudich JL., J. Biol. Chem. 280(31), 2005
PMID: 15951432
Removal of transducer HtrI allows electrogenic proton translocation by sensory rhodopsin I.
Bogomolni RA, Stoeckenius W, Szundi I, Perozo E, Olson KD, Spudich JL., Proc. Natl. Acad. Sci. U.S.A. 91(21), 1994
PMID: 7937859
Different dark conformations function in color-sensitive photosignaling by the sensory rhodopsin I-HtrI complex.
Sasaki J, Phillips BJ, Chen X, Van Eps N, Tsai AL, Hubbell WL, Spudich JL., Biophys. J. 92(11), 2007
PMID: 17351006
A Schiff base connectivity switch in sensory rhodopsin signaling.
Sineshchekov OA, Sasaki J, Phillips BJ, Spudich JL., Proc. Natl. Acad. Sci. U.S.A. 105(42), 2008
PMID: 18852467
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 20303644
PubMed | Europe PMC

Suchen in

Google Scholar