Neural Stem Cells Adopt Tumorigenic Properties by Constitutively Activated NF-kappa B and Subsequent VEGF Up-Regulation

Kaus A, Widera D, Kassmer S, Peter J, Zaenker K, Kaltschmidt C, Kaltschmidt B (2010)
STEM CELLS AND DEVELOPMENT 19(7): 999-1015.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kaus, Aljoscha; Widera, DariusUniBi ; Kassmer, Susannah; Peter, Jan; Zaenker, Kurt; Kaltschmidt, ChristianUniBi; Kaltschmidt, BarbaraUniBi
Abstract / Bemerkung
One of the challenges in stem cell research is to avoid transformation during cultivation. We studied high passage subventricular zone derived neural stem cells (NSCs) cultures of adult rats in the absence of growth factors epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). We termed this culture exogenous growth factor independent neural stem cells (GiNSCs). GiNSCs expressed stemness markers, displayed a high constitutive NF-kappa B activity and an increased, aberrant, polyploid DNA content. GiNSCs showed a tumorigenic phenotype and formed colonies in a soft agar assay. Microarray analysis showed the up-regulation of the NF-kappa B target gene vascular endothelial growth factor (VEGF). In contrast, proneuronal genes were down-regulated. Under neuronal differentiation conditions GiNSCs adopted a glioma-like phenotype, with nuclear p53, preserving high amounts of Nestin positive cells and prolonged proliferation. Neutralization of VEGF strongly inhibited proliferation and induced differentiation. In a gain of function approach, the transfection of NSCs with constitutively active upstream kinase IKK-2 led to constitutively activated NF-kappa B, proliferation in absence of growth factors and augmented VEGF secretion. In a rescue experiment a reduction of NF-kappa B activity by overexpression of I kappa B-AA1 was able to shift the morphology toward an elongated cell form, increased cell death, and decreased proliferation. Thus GiNSCs may provide a potent tool in cancer research, as their exogenous cytokine independent proliferation and their constitutively high NF-kappa B expression presumes cancerous properties observed in gliomas. In addition, this study might add a novel mechanism for detecting oncogenic transformation in therapeutic stem cell cultures.
Erscheinungsjahr
2010
Zeitschriftentitel
STEM CELLS AND DEVELOPMENT
Band
19
Ausgabe
7
Seite(n)
999-1015
ISSN
1547-3287
eISSN
1557-8534
Page URI
https://pub.uni-bielefeld.de/record/1794657

Zitieren

Kaus A, Widera D, Kassmer S, et al. Neural Stem Cells Adopt Tumorigenic Properties by Constitutively Activated NF-kappa B and Subsequent VEGF Up-Regulation. STEM CELLS AND DEVELOPMENT. 2010;19(7):999-1015.
Kaus, A., Widera, D., Kassmer, S., Peter, J., Zaenker, K., Kaltschmidt, C., & Kaltschmidt, B. (2010). Neural Stem Cells Adopt Tumorigenic Properties by Constitutively Activated NF-kappa B and Subsequent VEGF Up-Regulation. STEM CELLS AND DEVELOPMENT, 19(7), 999-1015. doi:10.1089/scd.2009.0416
Kaus, A., Widera, D., Kassmer, S., Peter, J., Zaenker, K., Kaltschmidt, C., and Kaltschmidt, B. (2010). Neural Stem Cells Adopt Tumorigenic Properties by Constitutively Activated NF-kappa B and Subsequent VEGF Up-Regulation. STEM CELLS AND DEVELOPMENT 19, 999-1015.
Kaus, A., et al., 2010. Neural Stem Cells Adopt Tumorigenic Properties by Constitutively Activated NF-kappa B and Subsequent VEGF Up-Regulation. STEM CELLS AND DEVELOPMENT, 19(7), p 999-1015.
A. Kaus, et al., “Neural Stem Cells Adopt Tumorigenic Properties by Constitutively Activated NF-kappa B and Subsequent VEGF Up-Regulation”, STEM CELLS AND DEVELOPMENT, vol. 19, 2010, pp. 999-1015.
Kaus, A., Widera, D., Kassmer, S., Peter, J., Zaenker, K., Kaltschmidt, C., Kaltschmidt, B.: Neural Stem Cells Adopt Tumorigenic Properties by Constitutively Activated NF-kappa B and Subsequent VEGF Up-Regulation. STEM CELLS AND DEVELOPMENT. 19, 999-1015 (2010).
Kaus, Aljoscha, Widera, Darius, Kassmer, Susannah, Peter, Jan, Zaenker, Kurt, Kaltschmidt, Christian, and Kaltschmidt, Barbara. “Neural Stem Cells Adopt Tumorigenic Properties by Constitutively Activated NF-kappa B and Subsequent VEGF Up-Regulation”. STEM CELLS AND DEVELOPMENT 19.7 (2010): 999-1015.

13 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A Role for NF-κB in Organ Specific Cancer and Cancer Stem Cells.
Kaltschmidt C, Banz-Jansen C, Benhidjeb T, Beshay M, Förster C, Greiner J, Hamelmann E, Jorch N, Mertzlufft F, Pfitzenmaier J, Simon M, Schulte Am Esch J, Vordemvenne T, Wähnert D, Weissinger F, Wilkens L, Kaltschmidt B., Cancers (Basel) 11(5), 2019
PMID: 31083587
The use of mesenchymal stromal cells in treatment of lung disorders.
Kardia E, Zakaria N, Sarmiza Abdul Halim NS, Widera D, Yahaya BH., Regen Med 12(2), 2017
PMID: 28244823
Rac1 Guides Porf-2 to Wnt Pathway to Mediate Neural Stem Cell Proliferation.
Yang XT, Huang GH, Li HJ, Sun ZL, Xu NJ, Feng DF., Front Mol Neurosci 10(), 2017
PMID: 28626389
Development and Characterisation of a Novel NF-κB Reporter Cell Line for Investigation of Neuroinflammation.
Zeuner MT, Vallance T, Vaiyapuri S, Cottrell GS, Widera D., Mediators Inflamm 2017(), 2017
PMID: 28790798
Nicorandil potentiates sodium butyrate induced preconditioning of neurons and enhances their survival upon subsequent treatment with H2O2.
Tabeshmehr P, Husnain HK, Salmannejad M, Sani M, Hosseini SM, Khorraminejad Shirazi MH., Transl Neurodegener 6(), 2017
PMID: 29093814
Endogenous recovery after brain damage: molecular mechanisms that balance neuronal life/death fate.
Tovar-y-Romo LB, Penagos-Puig A, Ramírez-Jarquín JO., J Neurochem 136(1), 2016
PMID: 26376102
IKK/NF-κB signaling contributes to glioblastoma stem cell maintenance.
Rinkenbaugh AL, Cogswell PC, Calamini B, Dunn DE, Persson AI, Weiss WA, Lo DC, Baldwin AS., Oncotarget 7(43), 2016
PMID: 27732951
Interaction of adult human neural crest-derived stem cells with a nanoporous titanium surface is sufficient to induce their osteogenic differentiation.
Schürmann M, Wolff A, Widera D, Hauser S, Heimann P, Hütten A, Kaltschmidt C, Kaltschmidt B., Stem Cell Res 13(1), 2014
PMID: 24858494
Angiotensin II increased neuronal stem cell proliferation: role of AT2R.
Chao J, Yang L, Buch S, Gao L., PLoS One 8(5), 2013
PMID: 23691054
Breast-cancer stem cells-beyond semantics.
Badve S, Nakshatri H., Lancet Oncol 13(1), 2012
PMID: 22225725
Glioma stem cell maintenance: the role of the microenvironment.
Heddleston JM, Hitomi M, Venere M, Flavahan WA, Yang K, Kim Y, Minhas S, Rich JN, Hjelmeland AB., Curr Pharm Des 17(23), 2011
PMID: 21827414

62 References

Daten bereitgestellt von Europe PubMed Central.

Neurogenesis in the adult human hippocampus.
Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH., Nat. Med. 4(11), 1998
PMID: 9809557
Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain.
Nunes MC, Roy NS, Keyoung HM, Goodman RR, McKhann G 2nd, Jiang L, Kang J, Nedergaard M, Goldman SA., Nat. Med. 9(4), 2003
PMID: 12627226
RNA-binding protein Musashi family: roles for CNS stem cells and a subpopulation of ependymal cells revealed by targeted disruption and antisense ablation.
Sakakibara S, Nakamura Y, Yoshida T, Shibata S, Koike M, Takano H, Ueda S, Uchiyama Y, Noda T, Okano H., Proc. Natl. Acad. Sci. U.S.A. 99(23), 2002
PMID: 12407178
CNS stem cells express a new class of intermediate filament protein.
Lendahl U, Zimmerman LB, McKay RD., Cell 60(4), 1990
PMID: 1689217
Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell.
Sakakibara S, Imai T, Hamaguchi K, Okabe M, Aruga J, Nakajima K, Yasutomi D, Nagata T, Kurihara Y, Uesugi S, Miyata T, Ogawa M, Mikoshiba K, Okano H., Dev. Biol. 176(2), 1996
PMID: 8660864
A role for SOX1 in neural determination.
Pevny LH, Sockanathan S, Placzek M, Lovell-Badge R., Development 125(10), 1998
PMID: 9550729
Sox2 expression defines a heterogeneous population of neurosphere-forming cells in the adult murine brain.
Brazel CY, Limke TL, Osborne JK, Miura T, Cai J, Pevny L, Rao MS., Aging Cell 4(4), 2005
PMID: 16026334
Neural stem cells and the origin of gliomas.
Sanai N, Alvarez-Buylla A, Berger MS., N. Engl. J. Med. 353(8), 2005
PMID: 16120861
Possible oncogenicity of subventricular zone neural stem cells: case report.
Uchida K, Mukai M, Okano H, Kawase T., Neurosurgery 55(4), 2004
PMID: 15458607
Biology of the subventricular zone in relation to gliomagenesis.
Barami K., J Clin Neurosci 14(12), 2007
PMID: 17931868
Neural stem cells, inflammation and NF-kappaB: basic principle of maintenance and repair or origin of brain tumours?
Widera D, Kaus A, Kaltschmidt C, Kaltschmidt B., J. Cell. Mol. Med. 12(2), 2007
PMID: 18182066
Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling.
Widera D, Mikenberg I, Elvers M, Kaltschmidt C, Kaltschmidt B., BMC Neurosci 7(), 2006
PMID: 16987412

AUTHOR UNKNOWN, 0
The IKK NF-kappa B system: a treasure trove for drug development.
Karin M, Yamamoto Y, Wang QM., Nat Rev Drug Discov 3(1), 2004
PMID: 14708018
Potential role of NF-kappaB in adult neural stem cells: the underrated steersman?
Widera D, Mikenberg I, Kaltschmidt B, Kaltschmidt C., Int. J. Dev. Neurosci. 24(2-3), 2006
PMID: 16413989
Signaling via NF-kappaB in the nervous system.
Kaltschmidt B, Widera D, Kaltschmidt C., Biochim. Biophys. Acta 1745(3), 2005
PMID: 15993497
Shared principles in NF-kappaB signaling.
Hayden MS, Ghosh S., Cell 132(3), 2008
PMID: 18267068
Nuclear factor-kappaB: its role in health and disease.
Kumar A, Takada Y, Boriek AM, Aggarwal BB., J. Mol. Med. 82(7), 2004
PMID: 15175863
NF-kappaB and IKK as therapeutic targets in cancer.
Kim HJ, Hawke N, Baldwin AS., Cell Death Differ. 13(5), 2006
PMID: 16485028
Nuclear factor-kappaB: the enemy within.
Aggarwal BB., Cancer Cell 6(3), 2004
PMID: 15380510
Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs.
Nakanishi C, Toi M., Nat. Rev. Cancer 5(4), 2005
PMID: 15803156
The role of NF-kappaB/IkappaB proteins in cancer: implications for novel treatment strategies.
Schwartz SA, Hernandez A, Mark Evers B., Surg Oncol 8(3), 1999
PMID: 11113665
Mammalian neural stem cells.
Gage FH., Science 287(5457), 2000
PMID: 10688783
Neurogenesis in the adult brain: new strategies for central nervous system diseases.
Lie DC, Song H, Colamarino SA, Ming GL, Gage FH., Annu. Rev. Pharmacol. Toxicol. 44(), 2004
PMID: 14744252
Neural precursor cells and their role in neuro-oncology.
Shah K, Hsich G, Breakefield XO., Dev. Neurosci. 26(2-4), 2004
PMID: 15711055
Microarray analysis of tumor necrosis factor alpha induced gene expression in U373 human glioblastoma cells.
Schwamborn J, Lindecke A, Elvers M, Horejschi V, Kerick M, Rafigh M, Pfeiffer J, Prullage M, Kaltschmidt B, Kaltschmidt C., BMC Genomics 4(1), 2003
PMID: 14641910
Forebrain-specific neuronal inhibition of nuclear factor-kappaB activity leads to loss of neuroprotection.
Fridmacher V, Kaltschmidt B, Goudeau B, Ndiaye D, Rossi FM, Pfeiffer J, Kaltschmidt C, Israel A, Memet S., J. Neurosci. 23(28), 2003
PMID: 14561868
Canonical NF-kappaB activity, dispensable for B cell development, replaces BAFF-receptor signals and promotes B cell proliferation upon activation.
Sasaki Y, Derudder E, Hobeika E, Pelanda R, Reth M, Rajewsky K, Schmidt-Supprian M., Immunity 24(6), 2006
PMID: 16782029
Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo.
Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA., Proc. Natl. Acad. Sci. U.S.A. 99(18), 2002
PMID: 12181492
SOX2 functions to maintain neural progenitor identity.
Graham V, Khudyakov J, Ellis P, Pevny L., Neuron 39(5), 2003
PMID: 12948443
No widespread induction of cell death genes occurs in pure motoneurons in an amyotrophic lateral sclerosis mouse model.
Perrin FE, Boisset G, Docquier M, Schaad O, Descombes P, Kato AC., Hum. Mol. Genet. 14(21), 2005
PMID: 16192287
Role of NF-kappaB in p53-mediated programmed cell death.
Ryan KM, Ernst MK, Rice NR, Vousden KH., Nature 404(6780), 2000
PMID: 10786798
Expression of vascular endothelial growth factor and its receptors in rat neural stem cells.
Maurer MH, Tripps WK, Feldmann RE Jr, Kuschinsky W., Neurosci. Lett. 344(3), 2003
PMID: 12812831
Genomic organization of human and mouse genes for vascular endothelial growth factor C.
Chilov D, Kukk E, Taira S, Jeltsch M, Kaukonen J, Palotie A, Joukov V, Alitalo K., J. Biol. Chem. 272(40), 1997
PMID: 9312130
IRAK1: a critical signaling mediator of innate immunity.
Gottipati S, Rao NL, Fung-Leung WP., Cell. Signal. 20(2), 2007
PMID: 17890055
The XRCC genes: expanding roles in DNA double-strand break repair.
Thacker J, Zdzienicka MZ., DNA Repair (Amst.) 3(8-9), 2004
PMID: 15279796
The MAP2/Tau family of microtubule-associated proteins.
Dehmelt L, Halpain S., Genome Biol. 6(1), 2004
PMID: 15642108
Ion channel modulators: new targets and new indications for old targets.
Priest B, Kaczorowski GJ, Garcia ML., Curr Opin Drug Discov Devel 9(5), 2006
PMID: 17002219
The individualization of cancer therapy: the unexpected role of p53.
Hait WN, Yang JM., Trans. Am. Clin. Climatol. Assoc. 117(), 2006
PMID: 18528466
Bone marrow transplants from HLA-identical siblings as compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission.
Barrett AJ, Horowitz MM, Pollock BH, Zhang MJ, Bortin MM, Buchanan GR, Camitta BM, Ochs J, Graham-Pole J, Rowlings PA., N. Engl. J. Med. 331(19), 1994
PMID: 7935682
p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation.
Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen AJ, Perry SR, Tonon G, Chu GC, Ding Z, Stommel JM, Dunn KL, Wiedemeyer R, You MJ, Brennan C, Wang YA, Ligon KL, Wong WH, Chin L, DePinho RA., Nature 455(7216), 2008
PMID: 18948956
Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model.
Wang Y, Yang J, Zheng H, Tomasek GJ, Zhang P, McKeever PE, Lee EY, Zhu Y., Cancer Cell 15(6), 2009
PMID: 19477430
Cancer stem cells in nervous system tumors.
Singh SK, Clarke ID, Hide T, Dirks PB., Oncogene 23(43), 2004
PMID: 15378086
Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation.
Rosland GV, Svendsen A, Torsvik A, Sobala E, McCormack E, Immervoll H, Mysliwietz J, Tonn JC, Goldbrunner R, Lonning PE, Bjerkvig R, Schichor C., Cancer Res. 69(13), 2009
PMID: 19509230
Cancerous stem cells can arise from pediatric brain tumors.
Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI., Proc. Natl. Acad. Sci. U.S.A. 100(25), 2003
PMID: 14645703
Chromosomal instability and p53 inactivation are required for genesis of glioblastoma but not for colorectal cancer in patients with germline mismatch repair gene mutation.
Leung SY, Yuen ST, Chan TL, Chan AS, Ho JW, Kwan K, Fan YW, Hung KN, Chung LP, Wyllie AH., Oncogene 19(35), 2000
PMID: 10962567
Nuclear factor-kappaB: a friend or a foe in cancer?
Shishodia S, Aggarwal BB., Biochem. Pharmacol. 68(6), 2004
PMID: 15313403
Agents with selective estrogen receptor (ER) modulator activity induce apoptosis in vitro and in vivo in ER-negative glioma cells.
Hui AM, Zhang W, Chen W, Xi D, Purow B, Friedman GC, Fine HA., Cancer Res. 64(24), 2004
PMID: 15604281
Gliotypic neural stem cells transiently adopt tumorigenic properties during normal differentiation.
Walton NM, Snyder GE, Park D, Kobeissy F, Scheffler B, Steindler DA., Stem Cells 27(2), 2009
PMID: 18988710
Spontaneous in vitro transformation of adult neural precursors into stem-like cancer cells.
Siebzehnrubl FA, Jeske I, Muller D, Buslei R, Coras R, Hahnen E, Huttner HB, Corbeil D, Kaesbauer J, Appl T, von Horsten S, Blumcke I., Brain Pathol. 19(3), 2008
PMID: 18637011
Novel anti-angiogenic therapies for malignant gliomas.
Norden AD, Drappatz J, Wen PY., Lancet Neurol 7(12), 2008
PMID: 19007739
Vascular endothelial growth factor (VEGF) as a target of bevacizumab in cancer: from the biology to the clinic.
Ranieri G, Patruno R, Ruggieri E, Montemurro S, Valerio P, Ribatti D., Curr. Med. Chem. 13(16), 2006
PMID: 16842197
Proliferation of human glioblastoma stem cells occurs independently of exogenous mitogens.
Kelly JJ, Stechishin O, Chojnacki A, Lun X, Sun B, Senger DL, Forsyth P, Auer RN, Dunn JF, Cairncross JG, Parney IF, Weiss S., Stem Cells 27(8), 2009
PMID: 19544433

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 20184430
PubMed | Europe PMC

Suchen in

Google Scholar