Optical Imaging of Retinotopic Maps in a Small Songbird, the Zebra Finch
Keary N, Voss J, Lehmann K, Bischof H-J, Loewel S (2010)
PLOS ONE 5(8): e11912.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Keary, Nina;
Voss, Joe;
Lehmann, Konrad;
Bischof, Hans-JoachimUniBi;
Loewel, Siegrid
Einrichtung
Abstract / Bemerkung
Background: The primary visual cortex of mammals is characterised by a retinotopic representation of the visual field. It has therefore been speculated that the visual wulst, the avian homologue of the visual cortex, also contains such a retinotopic map. We examined this for the first time by optical imaging of intrinsic signals in zebra finches, a small songbird with laterally placed eyes. In addition to the visual wulst, we visualised the retinotopic map of the optic tectum which is homologue to the superior colliculus in mammals. Methodology/Principal Findings: For the optic tectum, our results confirmed previous accounts of topography based on anatomical studies and conventional electrophysiology. Within the visual wulst, the retinotopy revealed by our experiments has not been illustrated convincingly before. The frontal part of the visual field (0 degrees +/- 30 degrees azimuth) was not represented in the retinotopic map. The visual field from 30 degrees-60 degrees azimuth showed stronger magnification compared with more lateral regions. Only stimuli within elevations between about 20 degrees and 40 degrees above the horizon elicited neuronal activation. Activation from other elevations was masked by activation of the preferred region. Most interestingly, we observed more than one retinotopic representation of visual space within the visual wulst, which indicates that the avian wulst, like the visual cortex in mammals, may show some compartmentation parallel to the surface in addition to its layered structure. Conclusion/Significance: Our results show the applicability of the optical imaging method also for small songbirds. We obtained a more detailed picture of retinotopic maps in birds, especially on the functional neuronal organisation of the visual wulst. Our findings support the notion of homology of visual wulst and visual cortex by showing that there is a functional correspondence between the two areas but also raise questions based on considerable differences between avian and mammalian retinotopic representations.
Erscheinungsjahr
2010
Zeitschriftentitel
PLOS ONE
Band
5
Ausgabe
8
Art.-Nr.
e11912
ISSN
1932-6203
eISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/1794366
Zitieren
Keary N, Voss J, Lehmann K, Bischof H-J, Loewel S. Optical Imaging of Retinotopic Maps in a Small Songbird, the Zebra Finch. PLOS ONE. 2010;5(8): e11912.
Keary, N., Voss, J., Lehmann, K., Bischof, H. - J., & Loewel, S. (2010). Optical Imaging of Retinotopic Maps in a Small Songbird, the Zebra Finch. PLOS ONE, 5(8), e11912. https://doi.org/10.1371/journal.pone.0011912
Keary, Nina, Voss, Joe, Lehmann, Konrad, Bischof, Hans-Joachim, and Loewel, Siegrid. 2010. “Optical Imaging of Retinotopic Maps in a Small Songbird, the Zebra Finch”. PLOS ONE 5 (8): e11912.
Keary, N., Voss, J., Lehmann, K., Bischof, H. - J., and Loewel, S. (2010). Optical Imaging of Retinotopic Maps in a Small Songbird, the Zebra Finch. PLOS ONE 5:e11912.
Keary, N., et al., 2010. Optical Imaging of Retinotopic Maps in a Small Songbird, the Zebra Finch. PLOS ONE, 5(8): e11912.
N. Keary, et al., “Optical Imaging of Retinotopic Maps in a Small Songbird, the Zebra Finch”, PLOS ONE, vol. 5, 2010, : e11912.
Keary, N., Voss, J., Lehmann, K., Bischof, H.-J., Loewel, S.: Optical Imaging of Retinotopic Maps in a Small Songbird, the Zebra Finch. PLOS ONE. 5, : e11912 (2010).
Keary, Nina, Voss, Joe, Lehmann, Konrad, Bischof, Hans-Joachim, and Loewel, Siegrid. “Optical Imaging of Retinotopic Maps in a Small Songbird, the Zebra Finch”. PLOS ONE 5.8 (2010): e11912.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
10 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Multiple Visual Field Representations in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata).
Bischof HJ, Eckmeier D, Keary N, Löwel S, Mayer U, Michael N., PLoS One 11(5), 2016
PMID: 27139912
Bischof HJ, Eckmeier D, Keary N, Löwel S, Mayer U, Michael N., PLoS One 11(5), 2016
PMID: 27139912
The visual system of a palaeognathous bird: visual field, retinal topography and retino-central connections in the Chilean tinamou (Nothoprocta perdicaria).
Krabichler Q, Vega-Zuniga T, Morales C, Luksch H, Marín GJ., J Comp Neurol 523(2), 2015
PMID: 25224833
Krabichler Q, Vega-Zuniga T, Morales C, Luksch H, Marín GJ., J Comp Neurol 523(2), 2015
PMID: 25224833
Perceptual strategies of pigeons to detect a rotational centre--a hint for star compass learning?
Alert B, Michalik A, Helduser S, Mouritsen H, Güntürkün O., PLoS One 10(3), 2015
PMID: 25807499
Alert B, Michalik A, Helduser S, Mouritsen H, Güntürkün O., PLoS One 10(3), 2015
PMID: 25807499
Features of the retinotopic representation in the visual wulst of a laterally eyed bird, the zebra finch (Taeniopygia guttata).
Michael N, Löwel S, Bischof HJ., PLoS One 10(4), 2015
PMID: 25853253
Michael N, Löwel S, Bischof HJ., PLoS One 10(4), 2015
PMID: 25853253
Flavoprotein autofluorescence imaging of visual system activity in zebra finches and mice.
Michael N, Bischof HJ, Löwel S., PLoS One 9(1), 2014
PMID: 24400130
Michael N, Bischof HJ, Löwel S., PLoS One 9(1), 2014
PMID: 24400130
Plumes of neuronal activity propagate in three dimensions through the nuclear avian brain.
Beckers GJ, van der Meij J, Lesku JA, Rattenborg NC., BMC Biol 12(), 2014
PMID: 24580797
Beckers GJ, van der Meij J, Lesku JA, Rattenborg NC., BMC Biol 12(), 2014
PMID: 24580797
Spatiotemporal analysis of electrically evoked activity in the chicken optic tectum: a VSDI study.
Weigel S, Luksch H., J Neurophysiol 107(2), 2012
PMID: 22031774
Weigel S, Luksch H., J Neurophysiol 107(2), 2012
PMID: 22031774
Visual Wulst analyses "where" and entopallium analyses "what" in the zebra finch visual system.
Watanabe S, Mayer U, Bischof HJ., Behav Brain Res 222(1), 2011
PMID: 21435357
Watanabe S, Mayer U, Bischof HJ., Behav Brain Res 222(1), 2011
PMID: 21435357
Avian ultraviolet/violet cones identified as probable magnetoreceptors.
Niessner C, Denzau S, Gross JC, Peichl L, Bischof HJ, Fleissner G, Wiltschko W, Wiltschko R., PLoS One 6(5), 2011
PMID: 21647441
Niessner C, Denzau S, Gross JC, Peichl L, Bischof HJ, Fleissner G, Wiltschko W, Wiltschko R., PLoS One 6(5), 2011
PMID: 21647441
Avian ultraviolet/violet cones as magnetoreceptors: The problem of separating visual and magnetic information.
Bischof HJ, Nießner C, Peichl L, Wiltschko R, Wiltschko W., Commun Integr Biol 4(6), 2011
PMID: 22446535
Bischof HJ, Nießner C, Peichl L, Wiltschko R, Wiltschko W., Commun Integr Biol 4(6), 2011
PMID: 22446535
69 References
Daten bereitgestellt von Europe PubMed Central.
Neural cartography: sensory and motor maps in the superior colliculus.
Sparks DL., Brain Behav. Evol. 31(1), 1988
PMID: 3334905
Sparks DL., Brain Behav. Evol. 31(1), 1988
PMID: 3334905
Visual areas of the mammalian cerebral cortex.
Van Essen DC., Annu. Rev. Neurosci. 2(), 1979
PMID: 120129
Van Essen DC., Annu. Rev. Neurosci. 2(), 1979
PMID: 120129
Functional anatomy of macaque striate cortex. II. Retinotopic organization.
Tootell RBH, Switkes E, Silverman MS, Hamilton SL., 1988
Tootell RBH, Switkes E, Silverman MS, Hamilton SL., 1988
Visual field representation in striate and prestriate cortices of a prosimian primate (Galago garnetti).
Rosa MG, Casagrande VA, Preuss T, Kaas JH., J. Neurophysiol. 77(6), 1997
PMID: 9212268
Rosa MG, Casagrande VA, Preuss T, Kaas JH., J. Neurophysiol. 77(6), 1997
PMID: 9212268
Cortical magnification factor and the ganglion cell density of the primate retina.
Wassle H, Grunert U, Rohrenbeck J, Boycott BB., Nature 341(6243), 1989
PMID: 2797190
Wassle H, Grunert U, Rohrenbeck J, Boycott BB., Nature 341(6243), 1989
PMID: 2797190
The distribution of afferents representing the right and left eyes in the cat's visual cortex.
Shatz CJ, Lindstrom S, Wiesel TN., Brain Res. 131(1), 1977
PMID: 884538
Shatz CJ, Lindstrom S, Wiesel TN., Brain Res. 131(1), 1977
PMID: 884538
The pattern of ocular dominance columns in flat-mounts of the cat visual cortex.
Lowel S, Singer W., Exp Brain Res 68(3), 1987
PMID: 3691734
Lowel S, Singer W., Exp Brain Res 68(3), 1987
PMID: 3691734
Computational maps in the brain.
Knudsen EI, du S, Esterly SD., 1987
Knudsen EI, du S, Esterly SD., 1987
Topographic relations between ocular dominance and orientation columns in the cat striate cortex.
Lowel S, Bischof HJ, Leutenecker B, Singer W., Exp Brain Res 71(1), 1988
PMID: 3416956
Lowel S, Bischof HJ, Leutenecker B, Singer W., Exp Brain Res 71(1), 1988
PMID: 3416956
Spatial relationships among three columnar systems in cat area 17.
Hübener M, Shoham D, Grinvald A, Bonhoeffer T., 1997
Hübener M, Shoham D, Grinvald A, Bonhoeffer T., 1997
Functional anatomy of macaque striate cortex. I. Ocular dominance, binocular interactions, and baseline conditions.
Tootell RBH, Hamilton SL, Silverman MS, Switkes E., 1988
Tootell RBH, Hamilton SL, Silverman MS, Switkes E., 1988
Functional anatomy of macaque striate cortex. III. Color.
Tootell RBH, Silverman MS, Hamilton SL, De RL, Switkes E., 1988
Tootell RBH, Silverman MS, Hamilton SL, De RL, Switkes E., 1988
Functional anatomy of macaque striate cortex. IV. Contrast and magno-parvo streams.
Tootell RBH, Hamilton SL, Switkes E., 1988
Tootell RBH, Hamilton SL, Switkes E., 1988
Functional anatomy of macaque striate cortex. V. Spatial frequency.
Tootell RBH, Silverman MS, Hamilton SL, Switkes E, De RL., 1988
Tootell RBH, Silverman MS, Hamilton SL, Switkes E, De RL., 1988
Cortical cartography revisited: A frequency perspective on the functional architecture of visual cortex.
Basole A, Kreft-Kerekes V, White LE, Fitzpatrick D., 2006
Basole A, Kreft-Kerekes V, White LE, Fitzpatrick D., 2006
Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues.
Brodmann K., 1909
Brodmann K., 1909
Revised nomenclature for avian telencephalon and some related brainstem nuclei.
Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, Kuenzel W, Medina L, Paxinos G, Shimizu T, Striedter G, Wild M, Ball GF, Durand S, Gunturkun O, Lee DW, Mello CV, Powers A, White SA, Hough G, Kubikova L, Smulders TV, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C, Jarvis ED, Guturkun O; Avian Brain Nomenclature Forum., J. Comp. Neurol. 473(3), 2004
PMID: 15116397
Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, Kuenzel W, Medina L, Paxinos G, Shimizu T, Striedter G, Wild M, Ball GF, Durand S, Gunturkun O, Lee DW, Mello CV, Powers A, White SA, Hough G, Kubikova L, Smulders TV, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C, Jarvis ED, Guturkun O; Avian Brain Nomenclature Forum., J. Comp. Neurol. 473(3), 2004
PMID: 15116397
Visual circuits of the avian telencephalon: evolutionary implications.
Shimizu T, Bowers AN, Shimizu T., Behav. Brain Res. 98(2), 1999
PMID: 10683106
Shimizu T, Bowers AN, Shimizu T., Behav. Brain Res. 98(2), 1999
PMID: 10683106
Neurons selective for orientation and binocular disparity in the visual Wulst of the barn owl (Tyto alba).
Pettigrew JD, Konishi M., Science 193(4254), 1976
PMID: 948741
Pettigrew JD, Konishi M., Science 193(4254), 1976
PMID: 948741
Comparison of the retinotopic organization of the visual wulst in nocturnal and diurnal raptors, with a note on the evolution of frontal vision.
Pettigrew JD., 1978
Pettigrew JD., 1978
Binocular visual processing in the owl's telencephalon.
Pettigrew JD., Proc. R. Soc. Lond., B, Biol. Sci. 204(1157), 1979
PMID: 38457
Pettigrew JD., Proc. R. Soc. Lond., B, Biol. Sci. 204(1157), 1979
PMID: 38457
Orientation mosaic in barn owl's visual Wulst revealed by optical imaging: comparison with cat and monkey striate and extra-striate areas.
Liu GB, Pettigrew JD., Brain Res. 961(1), 2003
PMID: 12535788
Liu GB, Pettigrew JD., Brain Res. 961(1), 2003
PMID: 12535788
Directional responses of visual wulst neurones to grating and plaid patterns in the awake owl.
Baron J, Pinto L, Dias MO, Lima B, Neuenschwander S., 2007
Baron J, Pinto L, Dias MO, Lima B, Neuenschwander S., 2007
The visual field and visually guided behavior in the zebra finch (Taeniopygia guttata).
Bischof HJ., 1988
Bischof HJ., 1988
The retinal binocular field of the pigeon (Columba livia: English racing homer).
Martin GR, Young SR., Vision Res. 23(9), 1983
PMID: 6636551
Martin GR, Young SR., Vision Res. 23(9), 1983
PMID: 6636551
Ipsilaterally evoked responses of the zebra finch visual wulst are reduced during ontogeny.
Bredenkotter M, Bischof HJ., Brain Res. 515(1-2), 1990
PMID: 2357573
Bredenkotter M, Bischof HJ., Brain Res. 515(1-2), 1990
PMID: 2357573
Differences between ipsilaterally and contralaterally evoked potentials in the visual wulst of the zebra finch.
Bredenkötter M, Bischof HJ., 1990
Bredenkötter M, Bischof HJ., 1990
Projections of the dorsolateral anterior complex and adjacent thalamic nuclei upon the visual Wulst in the pigeon.
Miceli D, Marchand L, Reperant J, Rio JP., Brain Res. 518(1-2), 1990
PMID: 1697211
Miceli D, Marchand L, Reperant J, Rio JP., Brain Res. 518(1-2), 1990
PMID: 1697211
Neural connections of the "visual wulst" of the avian telencephalon. Experimental studies in the piegon (Columba livia) and owl (Speotyto cunicularia).
Karten HJ, Hodos W, Nauta WJ, Revzin AM., J. Comp. Neurol. 150(3), 1973
PMID: 4721779
Karten HJ, Hodos W, Nauta WJ, Revzin AM., J. Comp. Neurol. 150(3), 1973
PMID: 4721779
The organization of the visual hyperstriatum in the domestic chick. I. Topology and topography of the visual projection.
Wilson P., Brain Res. 188(2), 1980
PMID: 7370765
Wilson P., Brain Res. 188(2), 1980
PMID: 7370765
The Optic Tectum of Birds: Mapping Our Way to Understanding Visual Processing.
Wylie DRW, Gutierrez-Ibanez C, Pakan JMP, Iwaniuk AN., 2009
Wylie DRW, Gutierrez-Ibanez C, Pakan JMP, Iwaniuk AN., 2009
The organization of the tectofugal pathway in birds: A comparative review.
Engelage J, Bischof HJ., 1993
Engelage J, Bischof HJ., 1993
Anatomy of the avian thalamofugal pathway.
Güntürkün O, Miceli D, Watanabe M., 1993
Güntürkün O, Miceli D, Watanabe M., 1993
Development of the visual system of the chick--a review.
Mey J, Thanos S., J Hirnforsch 33(6), 1992
PMID: 1494045
Mey J, Thanos S., J Hirnforsch 33(6), 1992
PMID: 1494045
Auditory and visual maps of space in the optic tectum of the owl.
Knudsen EI., J. Neurosci. 2(9), 1982
PMID: 7119872
Knudsen EI., J. Neurosci. 2(9), 1982
PMID: 7119872
The representation of the retina on the optic tectum of the pigeon.
HAMDI FA, WHITTERIDGE D., Q J Exp Physiol Cogn Med Sci 39(2), 1954
PMID: 13167321
HAMDI FA, WHITTERIDGE D., Q J Exp Physiol Cogn Med Sci 39(2), 1954
PMID: 13167321
Receptive properties of retinal cells and tectal cells in the pigeon.
Holden AL., 1969
Holden AL., 1969
The laminar organization of the pigeon optic tectum.
Holden AL., 1971
Holden AL., 1971
Single unit receptive fields and the cellular layers of the pigeon optic tectum.
Hughes CP, Pearlman AL., Brain Res. 80(3), 1974
PMID: 4421763
Hughes CP, Pearlman AL., Brain Res. 80(3), 1974
PMID: 4421763
Some characteristics of wide-field units in the brain of the pigeon.
Revzin AM., Brain Behav. Evol. 3(1), 1970
PMID: 5522343
Revzin AM., Brain Behav. Evol. 3(1), 1970
PMID: 5522343
Single cell responses from the optic tectum of the zebra finch (Taeniopygia guttata castanotis Gould).
Schmidt A, Engelage J, Bischof HJ., 1999
Schmidt A, Engelage J, Bischof HJ., 1999
Functional architecture of cortex revealed by optical imaging of intrinsic signals.
Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN., Nature 324(6095), 1986
PMID: 3785405
Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN., Nature 324(6095), 1986
PMID: 3785405
New paradigm for optical imaging: temporally encoded maps of intrinsic signal.
Kalatsky VA, Stryker MP., Neuron 38(4), 2003
PMID: 12765606
Kalatsky VA, Stryker MP., Neuron 38(4), 2003
PMID: 12765606
The avian visual wulst: I. An anatomical study of afferent and efferent pathways. II. An electrophysiological study of the functional properties of single neurons.
Miceli D, Gioanni H, Repérant J, Peyrichoux J., 1979
Miceli D, Gioanni H, Repérant J, Peyrichoux J., 1979
Visual receptive fields of single cells in the pigeon's optic tectum.
Jassik-Gerschenfeld D, Guichard J., Brain Res. 40(2), 1972
PMID: 5027167
Jassik-Gerschenfeld D, Guichard J., Brain Res. 40(2), 1972
PMID: 5027167
Motion characteristics of single units in the pigeon optic tectum.
Frost BJ, DiFranco DE., Vision Res. 16(11), 1976
PMID: 1006994
Frost BJ, DiFranco DE., Vision Res. 16(11), 1976
PMID: 1006994
Adaptation and habituation characteristics of tectal neurons in the pigeon.
Woods EJ, Frost BJ., Exp Brain Res 27(3-4), 1977
PMID: 880990
Woods EJ, Frost BJ., Exp Brain Res 27(3-4), 1977
PMID: 880990
Age-dependent ocular dominance plasticity in adult mice.
Lehmann K, Lowel S., PLoS ONE 3(9), 2008
PMID: 18769674
Lehmann K, Lowel S., PLoS ONE 3(9), 2008
PMID: 18769674
Anpassungen des visuellen Systems bei Zebrafinken (Taeniopygia. guttata castanotis) an laterales Sehen [Thesis]
Voß J., 2005
Voß J., 2005
A stereotaxic atlas of the brain of the zebra finch, Taeniopygia guttata, with special emphasis on telencephalic visual and song system nuclei in transverse and sagittal sections.
Nixdorf-Bergweiler BE, Bischof HJ., 2007
Nixdorf-Bergweiler BE, Bischof HJ., 2007
The projection of the retina, including the 'red area' on to the optic tectum of the pigeon.
Clarke PG, Whitteridge D., Q J Exp Physiol Cogn Med Sci 61(4), 1976
PMID: 1050022
Clarke PG, Whitteridge D., Q J Exp Physiol Cogn Med Sci 61(4), 1976
PMID: 1050022
Neurons with complex receptive fields in the stratum griseum centrale of the zebra finch (Taeniopygia guffata castanotis Gould) optic tectum.
Schmidt A, Bischof HJ., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 187(11), 2001
PMID: 11866189
Schmidt A, Bischof HJ., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 187(11), 2001
PMID: 11866189
Die Beziehung der Lage der vestibulären Organe zur Kopfhaltung bei Zebrafinken [Thesis].
Plass L., 1997
Plass L., 1997
Do cortical maps adapt to optimize information density?
Plumbley MD., Network 10(1), 1999
PMID: 10372761
Plumbley MD., Network 10(1), 1999
PMID: 10372761
Separate visual pathways for perception and action.
Goodale MA, Milner AD., Trends Neurosci. 15(1), 1992
PMID: 1374953
Goodale MA, Milner AD., Trends Neurosci. 15(1), 1992
PMID: 1374953
Afferent connections of the ectostriatum and visual wulst in the zebra finch (Taeniopygia guttata castanotis Gould)--an HRP study.
Nixdorf BE, Bischof HJ., Brain Res. 248(1), 1982
PMID: 7127143
Nixdorf BE, Bischof HJ., Brain Res. 248(1), 1982
PMID: 7127143
Topography of the hyperstriatal visual projection area in the young domestic chicken.
Denton CJ., Exp. Neurol. 74(2), 1981
PMID: 6170522
Denton CJ., Exp. Neurol. 74(2), 1981
PMID: 6170522
The organization of the visual hyperstriatum in the domestic chick. II. Receptive field properties of single units.
Wilson P., Brain Res. 188(2), 1980
PMID: 7370766
Wilson P., Brain Res. 188(2), 1980
PMID: 7370766
Relative Wulst volume is correlated with orbit orientation and binocular visual field in birds.
Iwaniuk AN, Heesy CP, Hall MI, Wylie DR., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 194(3), 2007
PMID: 18071712
Iwaniuk AN, Heesy CP, Hall MI, Wylie DR., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 194(3), 2007
PMID: 18071712
Retinal afferents to the tectum opticum and the nucleus opticus principalis thalami in the pigeon.
Remy M, Gunturkun O., J. Comp. Neurol. 305(1), 1991
PMID: 1709649
Remy M, Gunturkun O., J. Comp. Neurol. 305(1), 1991
PMID: 1709649
Functional subdivisions of the ascending visual pathways in the pigeon.
Gunturkun O, Hahmann U., Behav. Brain Res. 98(2), 1999
PMID: 10683107
Gunturkun O, Hahmann U., Behav. Brain Res. 98(2), 1999
PMID: 10683107
The pigeon's distant visual acuity as a function of viewing angle.
Uhlrich DJ, Blough PM, Blough DS., Vision Res. 22(4), 1982
PMID: 7112940
Uhlrich DJ, Blough PM, Blough DS., Vision Res. 22(4), 1982
PMID: 7112940
Multiple maps and activity-dependent representational plasticity in the anterior Wulst of the adult barn owl (Tyto alba).
Manger PR, Elston GN, Pettigrew JD., 2002
Manger PR, Elston GN, Pettigrew JD., 2002
The development of the optic lobe.
Meinertzhagen IA, Hanson TE., 1993
Meinertzhagen IA, Hanson TE., 1993
Brain maps, great and small: lessons from comparative studies of primate visual cortical organization.
Rosa MG, Tweedale R., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 360(1456), 2005
PMID: 15937007
Rosa MG, Tweedale R., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 360(1456), 2005
PMID: 15937007
Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices?
Medina L, Reiner A., Trends Neurosci. 23(1), 2000
PMID: 10631781
Medina L, Reiner A., Trends Neurosci. 23(1), 2000
PMID: 10631781
Immunohistochemical analysis of the visual wulst of the pigeon (Columba livia).
Shimizu T, Karten HJ., J. Comp. Neurol. 300(3), 1990
PMID: 1979983
Shimizu T, Karten HJ., J. Comp. Neurol. 300(3), 1990
PMID: 1979983
Material in PUB:
Teil dieser Dissertation
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 20694137
PubMed | Europe PMC
Suchen in