Optical Imaging of Retinotopic Maps in a Small Songbird, the Zebra Finch

Keary N, Voss J, Lehmann K, Bischof H-J, Loewel S (2010)
PLOS ONE 5(8): e11912.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Keary, Nina; Voss, Joe; Lehmann, Konrad; Bischof, Hans-JoachimUniBi; Loewel, Siegrid
Abstract / Bemerkung
Background: The primary visual cortex of mammals is characterised by a retinotopic representation of the visual field. It has therefore been speculated that the visual wulst, the avian homologue of the visual cortex, also contains such a retinotopic map. We examined this for the first time by optical imaging of intrinsic signals in zebra finches, a small songbird with laterally placed eyes. In addition to the visual wulst, we visualised the retinotopic map of the optic tectum which is homologue to the superior colliculus in mammals. Methodology/Principal Findings: For the optic tectum, our results confirmed previous accounts of topography based on anatomical studies and conventional electrophysiology. Within the visual wulst, the retinotopy revealed by our experiments has not been illustrated convincingly before. The frontal part of the visual field (0 degrees +/- 30 degrees azimuth) was not represented in the retinotopic map. The visual field from 30 degrees-60 degrees azimuth showed stronger magnification compared with more lateral regions. Only stimuli within elevations between about 20 degrees and 40 degrees above the horizon elicited neuronal activation. Activation from other elevations was masked by activation of the preferred region. Most interestingly, we observed more than one retinotopic representation of visual space within the visual wulst, which indicates that the avian wulst, like the visual cortex in mammals, may show some compartmentation parallel to the surface in addition to its layered structure. Conclusion/Significance: Our results show the applicability of the optical imaging method also for small songbirds. We obtained a more detailed picture of retinotopic maps in birds, especially on the functional neuronal organisation of the visual wulst. Our findings support the notion of homology of visual wulst and visual cortex by showing that there is a functional correspondence between the two areas but also raise questions based on considerable differences between avian and mammalian retinotopic representations.
Erscheinungsjahr
2010
Zeitschriftentitel
PLOS ONE
Band
5
Ausgabe
8
Art.-Nr.
e11912
ISSN
1932-6203
eISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/1794366

Zitieren

Keary N, Voss J, Lehmann K, Bischof H-J, Loewel S. Optical Imaging of Retinotopic Maps in a Small Songbird, the Zebra Finch. PLOS ONE. 2010;5(8): e11912.
Keary, N., Voss, J., Lehmann, K., Bischof, H. - J., & Loewel, S. (2010). Optical Imaging of Retinotopic Maps in a Small Songbird, the Zebra Finch. PLOS ONE, 5(8), e11912. https://doi.org/10.1371/journal.pone.0011912
Keary, Nina, Voss, Joe, Lehmann, Konrad, Bischof, Hans-Joachim, and Loewel, Siegrid. 2010. “Optical Imaging of Retinotopic Maps in a Small Songbird, the Zebra Finch”. PLOS ONE 5 (8): e11912.
Keary, N., Voss, J., Lehmann, K., Bischof, H. - J., and Loewel, S. (2010). Optical Imaging of Retinotopic Maps in a Small Songbird, the Zebra Finch. PLOS ONE 5:e11912.
Keary, N., et al., 2010. Optical Imaging of Retinotopic Maps in a Small Songbird, the Zebra Finch. PLOS ONE, 5(8): e11912.
N. Keary, et al., “Optical Imaging of Retinotopic Maps in a Small Songbird, the Zebra Finch”, PLOS ONE, vol. 5, 2010, : e11912.
Keary, N., Voss, J., Lehmann, K., Bischof, H.-J., Loewel, S.: Optical Imaging of Retinotopic Maps in a Small Songbird, the Zebra Finch. PLOS ONE. 5, : e11912 (2010).
Keary, Nina, Voss, Joe, Lehmann, Konrad, Bischof, Hans-Joachim, and Loewel, Siegrid. “Optical Imaging of Retinotopic Maps in a Small Songbird, the Zebra Finch”. PLOS ONE 5.8 (2010): e11912.

10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Multiple Visual Field Representations in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata).
Bischof HJ, Eckmeier D, Keary N, Löwel S, Mayer U, Michael N., PLoS One 11(5), 2016
PMID: 27139912
Perceptual strategies of pigeons to detect a rotational centre--a hint for star compass learning?
Alert B, Michalik A, Helduser S, Mouritsen H, Güntürkün O., PLoS One 10(3), 2015
PMID: 25807499
Plumes of neuronal activity propagate in three dimensions through the nuclear avian brain.
Beckers GJ, van der Meij J, Lesku JA, Rattenborg NC., BMC Biol 12(), 2014
PMID: 24580797
Visual Wulst analyses "where" and entopallium analyses "what" in the zebra finch visual system.
Watanabe S, Mayer U, Bischof HJ., Behav Brain Res 222(1), 2011
PMID: 21435357
Avian ultraviolet/violet cones identified as probable magnetoreceptors.
Niessner C, Denzau S, Gross JC, Peichl L, Bischof HJ, Fleissner G, Wiltschko W, Wiltschko R., PLoS One 6(5), 2011
PMID: 21647441
Avian ultraviolet/violet cones as magnetoreceptors: The problem of separating visual and magnetic information.
Bischof HJ, Nießner C, Peichl L, Wiltschko R, Wiltschko W., Commun Integr Biol 4(6), 2011
PMID: 22446535

69 References

Daten bereitgestellt von Europe PubMed Central.

Neural cartography: sensory and motor maps in the superior colliculus.
Sparks DL., Brain Behav. Evol. 31(1), 1988
PMID: 3334905
Visual areas of the mammalian cerebral cortex.
Van Essen DC., Annu. Rev. Neurosci. 2(), 1979
PMID: 120129
Functional anatomy of macaque striate cortex. II. Retinotopic organization.
Tootell RBH, Switkes E, Silverman MS, Hamilton SL., 1988
Visual field representation in striate and prestriate cortices of a prosimian primate (Galago garnetti).
Rosa MG, Casagrande VA, Preuss T, Kaas JH., J. Neurophysiol. 77(6), 1997
PMID: 9212268
Cortical magnification factor and the ganglion cell density of the primate retina.
Wassle H, Grunert U, Rohrenbeck J, Boycott BB., Nature 341(6243), 1989
PMID: 2797190
The distribution of afferents representing the right and left eyes in the cat's visual cortex.
Shatz CJ, Lindstrom S, Wiesel TN., Brain Res. 131(1), 1977
PMID: 884538
Computational maps in the brain.
Knudsen EI, du S, Esterly SD., 1987
Topographic relations between ocular dominance and orientation columns in the cat striate cortex.
Lowel S, Bischof HJ, Leutenecker B, Singer W., Exp Brain Res 71(1), 1988
PMID: 3416956
Spatial relationships among three columnar systems in cat area 17.
Hübener M, Shoham D, Grinvald A, Bonhoeffer T., 1997
Functional anatomy of macaque striate cortex. I. Ocular dominance, binocular interactions, and baseline conditions.
Tootell RBH, Hamilton SL, Silverman MS, Switkes E., 1988
Functional anatomy of macaque striate cortex. III. Color.
Tootell RBH, Silverman MS, Hamilton SL, De RL, Switkes E., 1988
Functional anatomy of macaque striate cortex. IV. Contrast and magno-parvo streams.
Tootell RBH, Hamilton SL, Switkes E., 1988
Functional anatomy of macaque striate cortex. V. Spatial frequency.
Tootell RBH, Silverman MS, Hamilton SL, Switkes E, De RL., 1988
Cortical cartography revisited: A frequency perspective on the functional architecture of visual cortex.
Basole A, Kreft-Kerekes V, White LE, Fitzpatrick D., 2006
Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues.
Brodmann K., 1909
Revised nomenclature for avian telencephalon and some related brainstem nuclei.
Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, Kuenzel W, Medina L, Paxinos G, Shimizu T, Striedter G, Wild M, Ball GF, Durand S, Gunturkun O, Lee DW, Mello CV, Powers A, White SA, Hough G, Kubikova L, Smulders TV, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C, Jarvis ED, Guturkun O; Avian Brain Nomenclature Forum., J. Comp. Neurol. 473(3), 2004
PMID: 15116397
Visual circuits of the avian telencephalon: evolutionary implications.
Shimizu T, Bowers AN, Shimizu T., Behav. Brain Res. 98(2), 1999
PMID: 10683106
Comparison of the retinotopic organization of the visual wulst in nocturnal and diurnal raptors, with a note on the evolution of frontal vision.
Pettigrew JD., 1978
Binocular visual processing in the owl's telencephalon.
Pettigrew JD., Proc. R. Soc. Lond., B, Biol. Sci. 204(1157), 1979
PMID: 38457
Directional responses of visual wulst neurones to grating and plaid patterns in the awake owl.
Baron J, Pinto L, Dias MO, Lima B, Neuenschwander S., 2007
The visual field and visually guided behavior in the zebra finch (Taeniopygia guttata).
Bischof HJ., 1988
Differences between ipsilaterally and contralaterally evoked potentials in the visual wulst of the zebra finch.
Bredenkötter M, Bischof HJ., 1990
The Optic Tectum of Birds: Mapping Our Way to Understanding Visual Processing.
Wylie DRW, Gutierrez-Ibanez C, Pakan JMP, Iwaniuk AN., 2009
The organization of the tectofugal pathway in birds: A comparative review.
Engelage J, Bischof HJ., 1993
Anatomy of the avian thalamofugal pathway.
Güntürkün O, Miceli D, Watanabe M., 1993
Development of the visual system of the chick--a review.
Mey J, Thanos S., J Hirnforsch 33(6), 1992
PMID: 1494045
The representation of the retina on the optic tectum of the pigeon.
HAMDI FA, WHITTERIDGE D., Q J Exp Physiol Cogn Med Sci 39(2), 1954
PMID: 13167321
Receptive properties of retinal cells and tectal cells in the pigeon.
Holden AL., 1969
The laminar organization of the pigeon optic tectum.
Holden AL., 1971
Some characteristics of wide-field units in the brain of the pigeon.
Revzin AM., Brain Behav. Evol. 3(1), 1970
PMID: 5522343
Single cell responses from the optic tectum of the zebra finch (Taeniopygia guttata castanotis Gould).
Schmidt A, Engelage J, Bischof HJ., 1999
Functional architecture of cortex revealed by optical imaging of intrinsic signals.
Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN., Nature 324(6095), 1986
PMID: 3785405
A stereotaxic headholder for small birds.
Bischof HJ., Brain Res. Bull. 7(4), 1981
PMID: 7028213
The avian visual wulst: I. An anatomical study of afferent and efferent pathways. II. An electrophysiological study of the functional properties of single neurons.
Miceli D, Gioanni H, Repérant J, Peyrichoux J., 1979
Visual receptive fields of single cells in the pigeon's optic tectum.
Jassik-Gerschenfeld D, Guichard J., Brain Res. 40(2), 1972
PMID: 5027167
Motion characteristics of single units in the pigeon optic tectum.
Frost BJ, DiFranco DE., Vision Res. 16(11), 1976
PMID: 1006994
Adaptation and habituation characteristics of tectal neurons in the pigeon.
Woods EJ, Frost BJ., Exp Brain Res 27(3-4), 1977
PMID: 880990
Age-dependent ocular dominance plasticity in adult mice.
Lehmann K, Lowel S., PLoS ONE 3(9), 2008
PMID: 18769674
Anpassungen des visuellen Systems bei Zebrafinken (Taeniopygia. guttata castanotis) an laterales Sehen [Thesis]
Voß J., 2005
A stereotaxic atlas of the brain of the zebra finch, Taeniopygia guttata, with special emphasis on telencephalic visual and song system nuclei in transverse and sagittal sections.
Nixdorf-Bergweiler BE, Bischof HJ., 2007
The projection of the retina, including the 'red area' on to the optic tectum of the pigeon.
Clarke PG, Whitteridge D., Q J Exp Physiol Cogn Med Sci 61(4), 1976
PMID: 1050022
Neurons with complex receptive fields in the stratum griseum centrale of the zebra finch (Taeniopygia guffata castanotis Gould) optic tectum.
Schmidt A, Bischof HJ., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 187(11), 2001
PMID: 11866189
Die Beziehung der Lage der vestibulären Organe zur Kopfhaltung bei Zebrafinken [Thesis].
Plass L., 1997
Do cortical maps adapt to optimize information density?
Plumbley MD., Network 10(1), 1999
PMID: 10372761
Separate visual pathways for perception and action.
Goodale MA, Milner AD., Trends Neurosci. 15(1), 1992
PMID: 1374953
Relative Wulst volume is correlated with orbit orientation and binocular visual field in birds.
Iwaniuk AN, Heesy CP, Hall MI, Wylie DR., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 194(3), 2007
PMID: 18071712
Functional subdivisions of the ascending visual pathways in the pigeon.
Gunturkun O, Hahmann U., Behav. Brain Res. 98(2), 1999
PMID: 10683107
The pigeon's distant visual acuity as a function of viewing angle.
Uhlrich DJ, Blough PM, Blough DS., Vision Res. 22(4), 1982
PMID: 7112940
Multiple maps and activity-dependent representational plasticity in the anterior Wulst of the adult barn owl (Tyto alba).
Manger PR, Elston GN, Pettigrew JD., 2002
The evolution of isocortex.
Kaas JH., Brain Behav. Evol. 46(4-5), 1995
PMID: 8564462
The development of the optic lobe.
Meinertzhagen IA, Hanson TE., 1993
Brain maps, great and small: lessons from comparative studies of primate visual cortical organization.
Rosa MG, Tweedale R., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 360(1456), 2005
PMID: 15937007
Immunohistochemical analysis of the visual wulst of the pigeon (Columba livia).
Shimizu T, Karten HJ., J. Comp. Neurol. 300(3), 1990
PMID: 1979983
Material in PUB:
Teil dieser Dissertation
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 20694137
PubMed | Europe PMC

Suchen in

Google Scholar